
Communication costs of sequential matrix
multiplications

Suraj Kumar

Inria & ENS Lyon

Email:suraj.kumar@ens-lyon.fr

CR12: September 2024

https://surakuma.github.io/courses/daamtc.html

Suraj Kumar (Inria & ENS Lyon) Matrix multiplication CR12 1 / 28

Why so much stress on matrix multiplication?

Basic in almost all computational domains

Everyone knows about it

Still there are many open research questions

Easy to understand and explain ideas with this computation

BLAS: Basic Linear Algebra Subprograms

Introduced in the 80s as a standard for LA computations

Organized by levels:

Level 1: vector/vector operations (x · y)
Level 2: vector/matrix (Ax)
Level 3: matrix/matrix (ABT , blocked algorithms)

Implementations:

Vendors (MKL from Intel, CuBLAS from NVidia, etc.)
Automatic Tuning: ATLAS
GotoBLAS

Suraj Kumar (Inria & ENS Lyon) Matrix multiplication CR12 2 / 28

Table of Contents

1 Matrix multiplication

2 Algorithms

3 Communication bounds

Suraj Kumar (Inria & ENS Lyon) Matrix multiplication CR12 3 / 28

Traditional matrix multiplication

C = AB, where A ∈ Rm×k , B ∈ Rk×n, and C ∈ Rm×n.

Cij =
∑

` Ai` · B`j

For simplicity, we assume m = k = n.

The first pseudo code that comes to mind:

//implements C=C+AB

for i=1 to n

for j=1 to n

for k=1 to n

C(i,j) = C(i,j) + A(i,k) * B(k,j);

Suraj Kumar (Inria & ENS Lyon) Matrix multiplication CR12 4 / 28

Traditional matrix multiplication

An element of C is obtained by iterating over a row of A and a column of B

Cij =
∑

` Ai` · B`j

C(i,j)

=

A(i,:)
B(:,j)

Suraj Kumar (Inria & ENS Lyon) Matrix multiplication CR12 5 / 28

Matrix multiplication: linear combination of columns

A column of C is obtained by linear combination of columns of A.

C(:,j) =

A

B(:,j)

Suraj Kumar (Inria & ENS Lyon) Matrix multiplication CR12 6 / 28

Matrix multiplication: linear combination of rows

A row of C is obtained by linear combination of rows of B.

C(i,:)

=
A(i,:)

B

Suraj Kumar (Inria & ENS Lyon) Matrix multiplication CR12 7 / 28

Matrix multiplication: sum of n matrices

Matrix multiplication can also be viewed as sum of n matrices.

C

=

A B

= + + · · · +

Suraj Kumar (Inria & ENS Lyon) Matrix multiplication CR12 8 / 28

Matrix multiplication: recursive calls on submatrices

Matrix is divided into 2×2 blocks

(
C11 C12

C21 C22

)
=

(
A11 A12

A21 A22

)(
B11 B12

B21 B22

)

C11 = A11B11 + A12B21

C12 = A11B12 + A12B22

C21 = A21B11 + A22B21

C22 = A21B12 + A22B22

Suraj Kumar (Inria & ENS Lyon) Matrix multiplication CR12 9 / 28

Matrix multiplication: recursive calls on submatrices

Operation count recurrence,

T (n) = 8T
(n

2

)
+O(n2)

T (n) = 1

Here O(n2) refers that ∃c ∈ N such that this term is less than or equal to
cn2 for every n.

After solving, we obtain T (n) = O(n3).

Suraj Kumar (Inria & ENS Lyon) Matrix multiplication CR12 10 / 28

Table of Contents

1 Matrix multiplication
Strassen’s Matrix Multiplication

2 Algorithms

3 Communication bounds

Suraj Kumar (Inria & ENS Lyon) Matrix multiplication CR12 11 / 28

Matrix multiplication: Strassen’s algorithm

(
C11 C12

C21 C22

)
=

(
A11 A12

A21 A22

)(
B11 B12

B21 B22

)

M1 = (A11 + A22)(B11 + B22)

M2 = (A21 + A22)B11

M3 = A11(B12 − B22)

M4 = A22(B21 − B11)

M5 = (A11 + A12)B22

M6 = (A21 − A11)(B11 + B12)

M7 = (A12 − A22)(B21 + B22)

C11 = M1 + M4 −M5 + M7

C12 = M3 + M5

C21 = M2 + M4

C22 = M1 −M2 + M3 + M6

Suraj Kumar (Inria & ENS Lyon) Matrix multiplication CR12 12 / 28

Matrix multiplication: Strassen’s algorithm

Operation count recurrence,

T (n) = 7T
(n

2

)
+O(n2)

T (n) = 1

After solving, we obtain T (n) = O(nlog2 7).
log2 7 ≈ 2.81

Open questions

Is there a way to perform matrix multiplication in less number of
operations than this algorithm?

What is the minimum number of operations to perform matrix
multiplication?

Suraj Kumar (Inria & ENS Lyon) Matrix multiplication CR12 13 / 28

Table of Contents

1 Matrix multiplication

2 Algorithms

3 Communication bounds

Suraj Kumar (Inria & ENS Lyon) Matrix multiplication CR12 14 / 28

Analysis of traditional matrix multiplication algorithm

//implements C=C+AB

for i=1 to n

for j=1 to n

for k=1 to n

C(i,j) = C(i,j) + A(i,k) * B(k,j);

Suraj Kumar (Inria & ENS Lyon) Matrix multiplication CR12 15 / 28

Analysis of traditional matrix multiplication algorithm

//implements C=C+AB

for i=1 to n

for j=1 to n

// read row i of C into fast memory (total n^2 reads)

for k=1 to n

// read row i of A into fast memory (total n^3 reads)

// read column j of B into fast memory (total n^3 reads)

C(i,j) = C(i,j) + A(i,k) * B(k,j);

// write row i of C back to slow memory (total n^2 writes)

2n3 + 2n2 reads/writes combined dominates 2n3 computations.

Suraj Kumar (Inria & ENS Lyon) Matrix multiplication CR12 16 / 28

Tiled matrix multiplication

A, B, C are n/b × n/b matrices of b × b subblocks

3 b × b blocks fit in the fast memory

+ =

Suraj Kumar (Inria & ENS Lyon) Matrix multiplication CR12 17 / 28

Tiled matrix multiplication

for i=1 to n/b

for j=1 to n/b

// read block C(i,j) into fast memory

// (total b^2 * n/b * n/b = n^2 reads)

for k=1 to n/b

// read block A(i,k) into fast memory

// (total b^2 * n/b * n/b * n/b = n^3/b reads)

// read block B(k,j) into fast memory

// (total b^2 * n/b * n/b * n/b = n^3/b reads)

//perform block matrix multiplication

C(i,j) = C(i,j) + A(i,k) * B(k,j);

// write block C(i,j) into slow memory

// (total b^2 * n/b * n/b = n^2 writes)

2n3

b + 2n2 reads/writes << 2n3 computations.

Suraj Kumar (Inria & ENS Lyon) Matrix multiplication CR12 18 / 28

Amount of volume in matrix multiplication

Let M be the size of the fast memory, make b as large as possible,
3b2 ≤ M

Number of reads/writes ≥ 2
√

3n3/
√
M + 2n2

Question : Is this optimal?

Suraj Kumar (Inria & ENS Lyon) Matrix multiplication CR12 19 / 28

Assignment 1 – deadline Sept. 19

for i=1 to m

for j=1 to n

for k=1 to l

C(i,j) = C(i,j) + A(i,k) * B(k,j);

Here A ∈ Rm×`, B ∈ R`×n, and C ∈ Rm×n. The computation is
performed with infinite precision.
Questions:

1 Prove that all the 6 permutations of the loops produce the same output.

2 Compute the number of cache misses for each permutation of the loops. All

matrices are stored in the row-major order in the slow memory. Size of each

cache line is L and the cache capacity << min(m, n, `). Assume that the

cache is fully associative and the least recently used (LRU) strategy is

employed to evict a cache line.

Suraj Kumar (Inria & ENS Lyon) Matrix multiplication CR12 20 / 28

Table of Contents

1 Matrix multiplication

2 Algorithms

3 Communication bounds

Suraj Kumar (Inria & ENS Lyon) Matrix multiplication CR12 21 / 28

Approach to obtain communication lower bounds

Loomis-Whitney inequalitiy: for d − 1 dimensional projections

For the 2d object G , Area(G) ≤ φxφy
For the 3d object H, Volume(H) ≤

√
φxyφyzφxz

x

y

G

φx

φy

z

x

y

φxz

φyz φxy

H

Hölder-Brascamp-Lieb (HBL) inequality – generalization for arbitrary
dimensional projections

Provide exponent for each projection

Suraj Kumar (Inria & ENS Lyon) Matrix multiplication CR12 22 / 28

Number of iterations with a phases of R reads (6= M)

Theorem

During a phase of R reads with memory M, the number of computed
iterations is bounded by

FM+R ≤
(

1

3
(M + R)

)3/2

Maximize FM+R constrained by:
FM+R ≤

√
NANBNC

0 ≤ NA,NB ,NC

NA + NB + NC ≤ M + R

Here NA, NB and NC represent the number of entries of A, B and C , respectively.

Using Lagrange multipliers, maximal value obtained when NA = NB = NC .

Suraj Kumar (Inria & ENS Lyon) Matrix multiplication CR12 23 / 28

Selection of R

for i=1 to m

for j=1 to n

for k=1 to l

C(i,j) = C(i,j) + A(i,k) * B(k,j);

Total number of iterations in one phase: FM+R ≤
(
1
3(M + R)

)3/2
Total volume of reads:

Vread ≥
⌊

mn`

FM+R

⌋
· R ≥

(
mn`

FM+R
− 1

)
· R

Valid for all values of R, maximized when R = 2M:

Vread ≥ 2mn`/
√
M − 2M

Suraj Kumar (Inria & ENS Lyon) Matrix multiplication CR12 24 / 28

Communication bounds

Vread ≥ 2mn`/
√
M − 2M

All elements of the output matrix are in the slow memory in the end. Each
element of C is written at least once: Vwrite ≥ mn

Theorem

The total volume of I/Os is bounded by:

VI/O ≥ 2mn`/
√
M + mn − 2M

Our tiled algorithm (explained previously)

With square matrices, total number of reads/writes
≥ 2
√

3n3/
√
M + 2n2

How far it is from the lower bound?

Suraj Kumar (Inria & ENS Lyon) Matrix multiplication CR12 25 / 28

Structure of the optimal algorithm (attaining the same
constant for the leading term)

Consider the following algorithm sketch:

Partition C into blocks of size (
√
M − 1)× (

√
M − 1)

Partition A into block-columns of size (
√
M − 1)× 1

Partition B into block-rows of size 1× (
√
M − 1)

For each block Cb of C :

Load the corresponding blocks of A and B on after the other
For each pair of blocks Ab,Bb, compute Cb ← Cb + AbBb

When all computations for Cb are performed, write back Cb

+ =

Suraj Kumar (Inria & ENS Lyon) Matrix multiplication CR12 26 / 28

Another approach to computer communication bound

Red-Blue pebble game (Hong and Kung, 1981):

Red pebbles: limited number S (slots in fast memory)

Blue pebbles: unlimited number, only for slow memory

Rules:

(1) A red pebble may be placed on a vertex that has a blue pebble.

(2) A blue pebble may be placed on a vertex that has a red pebble.

(3) If all predecessors of a vertex v have a red pebble, a red pebble may
be placed on v .

(4) A pebble (red or blue) may be removed at any time.

(5) No more than S red pebbles may be used at any time.

(6) A blue pebble can be placed on an input vertex at any time

Objective: put a red pebble on each target (not necessary simultaneously)
using a minimum rules 1 and 2 (I/O operations)

Suraj Kumar (Inria & ENS Lyon) Matrix multiplication CR12 27 / 28

Example: FFT graphc⃝John E Savage 10.1 The Pebble Game 463

Figure 10.1 An FFT graph F (3) on n = 23 inputs. Input vertices are on the bottom; edges are
directed upward. Four pebbles are shown on the graph when pebbling the leftmost output.

input variables are held in an auxiliary random-access machine so that it can access them in
arbitrary order, a condition not imposed on pebble games. It follows that inputs to a pebble
game can be fetched in advance, since the times at which they are needed are data-independent.
Second, lower bounds on the exchange of space for time with branching programs are harder to
obtain due to their increased flexibility. Third, straight-line programs are used in many prob-
lems, such as integer multiplication, convolution, matrix multiplication, and discrete Fourier
transform, and the pebble game gives the relevant lower bounds. For other problems, such as
sorting and merging, the branching program model is the model of choice since these problems
are typically solved with branching programs. We expand upon this topic in Section 10.9.1.

10.1.2 Playing the Pebble Game

The pebble game is illustrated in Fig. 10.1 by pebbling the FFT graph F (3) with eight inputs
and 24 non-input vertices. This graph has the property that the set of paths from input vertices
to an output vertex forms a complete balanced binary tree. (See Fig. 10.2.) It follows that we
can pebble the FFT graph by pebbling each of the trees. Since two of the eight outputs share
the same tree at the next lower level, we can pebble two outputs at the same time.

Binary trees form an important class of graphs. A complete balanced binary tree of depth
4 is illustrated in Fig. 10.2. (The depth of a directed tree is the number of edges on the longest
path from an input vertex to the output (or root) vertex.) This tree has 16 input vertices and
one output vertex. A complete balanced binary tree of depth 0, T (0), consists of a single
vertex. A complete balanced binary tree of depth d > 0, T (d), consists of a root vertex and
two copies of T (d − 1) whose root vertices each have one edge directed from them to the
root vertex of the full tree. Thus in Fig. 10.2 the complete balanced binary tree of depth four
T (4) is constructed of two copies of T (3), which in turn are each constructed of two copies of
T (2), and so on. It follows by straightforward induction that a complete balanced binary tree
of depth d has 2d inputs and 2d+1 − 1 vertices. (See Problem 10.8.)

k levels,n = 2k vertices at each level

Minimum number S of red pebbles ?
How many I/Os for this minimum number S ?
Suraj Kumar (Inria & ENS Lyon) Matrix multiplication CR12 28 / 28

	Matrix multiplication
	Strassen's Matrix Multiplication

	Algorithms
	Communication bounds

