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Loomis-Whitney inequality

Relates volume of a d-dimensional object with its all d − 1 dimensional
projections

For the 2d object G , Area(G ) ≤ φxφy
For the 3d object H, Volume(H) ≤

√
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Similarly, for a 4d object I , Volume(I ) ≤ φ
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How to work with arbitrary dimensional projections?
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Hölder-Brascamp-Lieb (HBL) inequality

Generalize Loomis-Whitney inequality for arbitrary dimensional projections

Provide exponent for each projection

Lemma

Consider any positive integers ` and m and any m projections φj : Z` → Z`j

(`j ≤ `), each of which extracts `j coordinates Sj ⊆ [`] and forgets the `− `j
others. Define C =

{
s ∈ [0, 1]m : ∆ · s ≥ 1

}
, where the `×m matrix ∆ has entries

∆i,j = 1 if i ∈ Sj and ∆i,j = 0 otherwise. If [s1 · · · sm]T ∈ C, then for all F ⊆ Z`,

|F | ≤
∏
j∈[m]

|φj(F )|sj .

For tighter bound, we usually work with ∆ · s = 1

Possible that ∆ · s = 1 does not have solution, then consider s such
that ∆ · s is not very far from 1

Notation: 1 represents a vector of all ones. [m] denotes {1, 2, · · · ,m} throughout
the slides.
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HBL inequality

Lemma

Consider any positive integers ` and m and any m projections φj : Z` → Z`j (`j ≤ `),
each of which extracts `j coordinates Sj ⊆ [`] and forgets the `− `j others. Define
C =

{
s ∈ [0, 1]m : ∆ · s ≥ 1

}
, where the `×m matrix ∆ has entries

∆i,j = 1 if i ∈ Sj and ∆i,j = 0 otherwise. If [s1 · · · sm]T ∈ C, then for all F ⊆ Z`,

|F | ≤
∏
j∈[m]

|φj(F )|sj .

Matrix multiplication (C = AB) example

Here A ∈ Rn1×n2 , B ∈ Rn2×n3 , and C ∈ Rn1×n3 .

for i = 1:n1, for k = 1:n2, for j = 1:n3

C [i ][j ]+ = A[i ][k] ∗ B[k][j ]
∆ =

A B C( )i 1 0 1
j 0 1 1
k 1 1 0

Find s =
[
s1 s2 s3

]T
such that ∆ · s = 1

φA, φB , φC : projections of computations on arrays A, B, C

HBL inequality: amount of computations ≤ |φA|s1 |φB |s2 |φC |s3
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HBL inequality

It can be used to obtain sequential or parallel communication lower bound.

Sequential lower bound formulation for matrix multiplication:

Determine maximum amount of computations under segment size
constraint: Maximize |φA|s1 |φB |s2 |φC |s3 s.t. |φA|+ |φB |+ |φC | <= Constt

Calculate total data transfers for all the segments

Parallel lower bound formulation for matrix multiplication:

Determine the sum of array accesses to perform the required computations

Minimize |φA|+ |φB |+ |φC | s.t.
amount of computations ≤ |φA|s1 |φB |s2 |φC |s3
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Optimization problems [Ballard et al., IPDPS 2017]

Lemma
Given si > 0, the optimization problem

max
xi≥0

∏
i∈[m]

x si
i subject to

∑
i∈[m]

xi ≤ c

yields the maximum value

c
∑

i si
∏
j∈[m]

(
sj∑
i si

)sj

.

Lemma
Given si > 0, the optimization problem

min
xi≥0

∑
i∈[m]

xi subject to
∏
i∈[m]

x si
i ≥ c

yields the minimum value (
c∏
i si

si

) 1∑
i si ∑

j∈[m]

sj .

Both lemmas can be proved with the Lagrange multipliers.
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CP decomposition of A ∈ Rn1×n2×···×nd

It factorizes a tensor into a sum of rank one tensors.

= + + · · · +

CP decomposition of a 3-dimensional tensor.

A =
r∑

α=1

U1(:, α) ◦ U2(:, α) ◦ · · · ◦ Ud(:, α)

It can be concisely expressed as A = JU1,U2, · · · ,UdK. CP decomposition for a
3-dimensional tensor in matricized form can be written as:

A(1) = U1(U3 � U2)T , A(2) = U2(U3 � U1)T A(3) = U3(U2 � U1)T .

It is useful to assume that U1,U2 · · ·Ud are normalized to length one with the
weights given in a vector λ ∈ Rr .
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CP-ALS algorithm for a 3-dimensional tensor A

Repeat until maximum iterations reached or no further improvement obtained

1 Solve U1(U3 � U2)T = A(1) for U1 ⇒ U1 = A(1)(U3 � U2)(UT
3 U3 ∗ UT

2 U2)†

2 Normalize columns of U1

3 Solve U2(U3 � U1)T = A(2) for U2 ⇒ U2 = A(2)(U3 � U1)(UT
3 U3 ∗ UT

1 U1)†

4 Normalize columns of U2

5 Solve U3(U2 � U1)T = A(3) for U3 ⇒ U3 = A(3)(U2 � U1)(UT
2 U2 ∗ UT

1 U1)†

6 Normalize columns of U3

Here A† denotes the Moore–Penrose pseudoinverse of A. We use the following
identity to get expressions for U1,U2 and U3:

(A� B)T (A� B) = ATA ∗ BTB
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ALS for computing a CP decomposition

Algorithm 1 CP-ALS method to compute CP decomposition

Require: input tensor A ∈ Rn1×···×nd , desired rank k , initial factor matrices
Uj ∈ Rnj×k for 1 ≤ j ≤ d

Ensure: Jλ;U1, · · · ,UdK : a rank-k CP decomposition of A
repeat

for i = 1 to d do
V ← UT

1 U1 ∗ · · · ∗ UT
i−1Ui−1U

T
i+1Ui+1 ∗ · · · ∗ UT

d Ud

Ui ← A(i)(Ud � · · · � Ui+1 � Ui−1 � U1)

Ui ← UiV
†

λ← normalize colums of Ui

end for
until converge or the maximum number of iterations

The collective operation A(i)(Ud � · · · � Ui+1 � Ui−1 � U1) is known as
Matricized tensor times Khatri-Rao product (MTTKRP) computation
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Gradient based CP decomposition

F = min
U1,U2U3

||A− JU1,U2,U3K||2F

Gradients:
G = 2(A− JU1,U2,U3K)

∂F

∂U1
= −G(1)(U3 � U2)

∂F

∂U2
= −G(2)(U3 � U1)

∂F

∂U3
= −G(3)(U2 � U1)

Update U1,U2 and U3 based on gradients until convergence or for the fixed
number of iterations

Gradient based algorithm also employs MTTKRP computations.
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MTTKRP

We want to find R-rank CP decomposition of A ∈ Rn1×···×nd . The corresponding
MTTKRP operation is

Ui ← A(i)(Ud � · · · � Ui+1 � Ui−1 � U1).

Two approaches to compute this operation:

Conventional approach

Compute Khatri-Rao products in a temporary T
Multiply A(i) with the temporary T , Ui = A(i)T
Total arithmetic cost = O(NR)

All-at-once approach

Ui (ji , r) =
∑

j1,··· ,ji−1,ji+1,···jd

A(j1, · · · jd)
∏

k∈[d ]−{i}

Uk(jk , r)

Total arithmetic cost = O(dNR)
No intermediate is formed (may limit the partial reuse)
Very useful to work with sparse tensor

n1n2 · · · nd is denoted by N through out the slides. We will mainly focus on
all-at-once approach. This approach reduces communication.
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MTTKRP all-at-once pseudo code

For {j1 = 1 to n1}

. . .

For {jd = 1 to nd}

For {r = 1 to R}
Ui (ji , r)+ = A(j1, · · · jd) ·

∏
k∈[d ]−{i}

Uk(jk , r)

Total number of loop iterations = NR

We assume that the innermost computation is performed atomically. This is
required for the communication lower bounds.

Sequential case : all the inputs are present in the memory when the single
output value is updated

Parallel case: all the multiplications of this computation are performed on
only one processor
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∆ matrix for MTTKRP

∆ =

A U1 · · · Ui · · · Ud



j1 1 1
...

...
. . .

ji 1 1
...

...
. . .

jd 1 1
r 1 · · · 1 · · · 1

To obtain tight lower bound, find s = [s1, · · · , sd ]T such that ∆ · s = 1

sT =

[
1− 1

d
,

1

d
, · · · , 1

d

]
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Analysis of a segment

We consider a segment of M loads and stores. Any algorithm in the segment can
access at most 3M elements.

Output: at most M elements can be live after each segment & M − L
elements written to the slow memory

Inputs: at most M elements are available at the start of the segment & L
elements loaded to the fast memory

Let F be the subset of iteration space evaluated during the segment. φi (F )
denotes the projection of F on the i-th variable.

Optimization problem:

Maximize |F | subject to

|F | ≤
∏

i∈[d+1]

|φi (F )|si

∑
i∈[d+1]

|φi (F )| ≤3M
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Communication lower bound

After solving the optimization problem, we get

|F | ≤ 1

d

(
1

2− 1/d

)2−1/d

(1− 1/d)1−1/d(3M)2−1/d ≤ 1

d
(3M)2−1/d .

Theorem

Any sequential MTTKRP algorithm performs at least 1
32−1/d

dNR
M1−1/d −M loads and

stores.

Proof: Data transfer lower bound =
⌊
NR
|F |

⌋
M ≥

(
NR
|F | − 1

)
M = 1

32−1/d
dNR

M1−1/d −M

Corollary

Any parallel MTTKRP algorithm performs at least 1
32−1/d

dNR
PM1−1/d −M sends and

receives.

Proof: There must be a processor which performs at least NR
P loop iterations,

applying the previous theorem for this processor yields the mentioned bound.

Suraj Kumar (Inria & ENS Lyon) MTTKRP CR12 18 / 28



Generalized size of a segment

We are interested to know how many loop iterations we can perform by accessing
A elements.

Optimization problem:

Maximize |FM+A| subject to

|FM+A| ≤
∏

i∈[d+1]

|φi (F )|si

∑
i∈[d+1]

|φi (F )| ≤M + A

Data transfer lower bound =
⌊

NR
|FM+A|

⌋
A ≥

(
NR
|FM+A| − 1

)
A

We select A such that the bound is maximum.
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Communication optimal sequential algorithm

We select a block size b such that bd + db ≤ M.

1 Loop over b × · · · × b blocks of the tensor

2 With block in memory, loop over subcolumns of input factor matrices and
update corresponding subcolumn of output matrix

Amount of data transfer is bounded by

N +
⌈n1
b

⌉
· · ·
⌈nd
b

⌉
· R(d + 1)b.

With b ≈ M1/d , data transfer cost =

O
(
N +

dNR

M1−1/d

)

Sequential block algorithm for
d = 3:

b

b
b

·U1

U2

U3
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Comparisons

Lower Bound All-at-once Conventional (MM)

Flops - dNR 2NR

Words Ω
(

dNR
M1−1/d

)
O
(
N + dNR

M1−1/d

)
O
(
N + NR

M1/2

)
Temp Mem - - NR

ni

All-at-once approach performs d
2 more flops than the conventional approach

For relatively small R, N term dominates communication

This is the typical case in practice

For relatively large R, all-at-once approach based algorithm communicates
less

better exponent on M
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Settings to compute parallel communication lower bound

The algorithm load balances the computation – each processor performs
NR/P number of loop iterations

One copy of data is in the system

There exists a processor whose input data at the start plus output data

at the end must be at most
N+

∑d
i=1 niR
P words – will analyze amount of

data transfers for this processor
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Communication lower bound

Let F be the subset of iteration space evaluated on a processor. φi (F ) denotes
the projection of F on the i-th variable. We recall that sT =

[
1− 1

d ,
1
d , · · · ,

1
d

]
.

Optimization problem:

Minimize
∑

i∈[d+1]

|φi (F )| subject to

NR

P
≤

∏
i∈[d+1]

|φi (F )|si

After solving the above optimization we obtain,∑
i∈[d+1]

|φi (F )| =

(∑
i

si

)(
NR/P∏

i s
si
i

)1/
∑

i si

= (2−1/d)

(
NR/P∏

i s
si
i

) d
2d−1

≥ 2

(
dNR

P

) d
2d−1

.

Communication lower bound =
∑

i∈[d+1]

|φi (F )| − data owned by the processor

≥2

(
dNR

P

) d
2d−1

−
N +

∑d
i=1 niR

P
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Sketch of communication optimal algorithm for d = 3

Assume that the required rank (R) is small. We do not need to communicate
tensor in this setting. Suppose we want to update U2.

U1

U2

U3

Each processor

1 Starts with one subtensor and subset of
rows of each input factor matrix

2 All-Gathers all the rows needed from U1

3 All-Gathers all the rows needed from U3

4 Computes its contribution to rows of U2

(local MTTKRP)

5 Reduce-Scatters to compute and distribute
U2 evenly
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Parallel communication optimal MTTKRP algorithm

Algorithm 2 Parallel MTTKRP algorithm

Require: input tensor A ∈ Rn1×···×nd , factor matrices Uj ∈ Rnj×R for 1 ≤ j ≤ d , mode
j , P processors are arranged in p0 × p1 × · · · × pd logical processor grid

Ensure: Updated Uj

1: (p′0, p
′
1, · · · , p′d) is my processor id

2: //All-gather input tensor
3: Ap′1,··· ,p

′
d

= All-Gather(A, (∗, p′1, · · · , p′d))

4: //All-gather factor matrices except Uj

5: for k ∈ [d ]− {j} do
6: (Uk)p′0,p′k = All-Gather(Uk , (p

′
0, ∗, · · · , ∗, p′k , ∗, · · · , ∗))

7: end for
8: //Compute local MTTKRP
9: T = Local-MTTKRP (Ap′1,··· ,p

′
d
, (Uk)p′0,p′k , j)

10: //Reduce scatter along the processors which have same p′0 and p′j
11: Reduce-Scatter((Uj)p′0,p′j ,T , (p

′
0, ∗, · · · , ∗, p′j , ∗, · · · , ∗))
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Communication cost

We set p0 ≈ (dR)
d

2d−1

(N/P)
d−1
2d−1

and pk ≈ nk

(Np0/P)
1
d

for k ∈ [d ].

Communication cost of the algorithm with the above processor grid is

O
(
dNR

P

) d
2d−1

.
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Perspectives

Tight communication lower bounds for MTTKRP with small P and
rectangular factor matrices

Cost analysis of several ways to perform MTTKRP

Amount of reuse across multiple MTTKRPs

Optimal cost of CP-ALS algorithm for an iteration (or for a set of
d-iterations)
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