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Loomis-Whitney inequality

@ Relates volume of a d-dimensional object with its all d — 1 dimensional
projections
o For the 2d object G, Area(G) < ¢, 0,
o For the 3d object H, Volume(H) < \/¢xybyrbxz

y y
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@ Similarly, for a 4d object /, Volume(l) < gi)éyqux%ngbézwqﬁézw

@ How to work with arbitrary dimensional projections?
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Holder-Brascamp-Lieb (HBL) inequality

@ Generalize Loomis-Whitney inequality for arbitrary dimensional projections

@ Provide exponent for each projection

Lemma

Consider any positive integers £ and m and any m projections ¢; : 7t — 75
(¢j <€), each of which extracts {; coordinates S; C [¢] and forgets the { — {;
others. Define C = {s € [0,1]™ : A s> 1}, where the £ x m matrix A has entries
A;j=1ifi €S and A;j =0 otherwise. If [s; -+ sm]" € C, then for all F C ZF,

Fl < IT 1Pl

j€[m]

@ For tighter bound, we usually work with A -s =1
o Possible that A -s =1 does not have solution, then consider s such
that A - s is not very far from 1

Notation: 1 represents a vector of all ones. [m] denotes {1,2,---, m} throughout

the slides.
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HBL inequality

Lemma

Consider any positive integers £ and m and any m projections ¢; : Z* — 7% (4; < ¢),

each of which extracts {; coordinates S; C [{] and forgets the £ — {; others. Define

C={s€[0,1]": A-s>1}, where the { x m matrix A has entries

A;j=1ifi €S;and A;j =0 otherwise. If [s; --- sm]" € C, then for all F C Z*,
IFI < TT I:(F)19.

J€[m]

Matrix multiplication (C = AB) example

Here A€ R™*™, B € R™*™, and C € R"*"™, A B C
for i = 1:ny, for k = 1:n,, for j = 1:n3 i /1 0 1
CliL+ = AlillA] * BIKIL] n= e 4
k \1 1 0

o Finds=[s; s 53]T such that A -s =1

@ oa,Pp, dc: projections of computations on arrays A, B, C

@ HBL inequality: amount of computations < [pa|®|dg|%|dc|®
w
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HBL inequality

It can be used to obtain sequential or parallel communication lower bound.

Sequential lower bound formulation for matrix multiplication:

@ Determine maximum amount of computations under segment size
constraint: Maximize |pa||dg|%|dc|® s.t. |dal + |d8| + |¢c| <= Constt

@ Calculate total data transfers for all the segments

Parallel lower bound formulation for matrix multiplication:

@ Determine the sum of array accesses to perform the required computations

o Minimize |pa| + |¢8| + |oc] s.t.
amount of computations < |pa|™|dg|?|dc|®
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Optimization problems [Ballard et al., IPDPS 2017]

Lemma

Given s; > 0, the optimization problem

s; . .
r;rf\%( H x;" subject to Z xi < ¢
—i€[m] i€[m]

yields the maximum value si
s ( 5 ) '
=
2

J€lm]

Lemma

Given s; > 0, the optimization problem

. . s:
T>|r(1) Z X; subject to H X' > c

i€[m] i€[m]
yields the minimum value 9
( (o} ) 25 si Z
e sj.
.S;
[is jétm]

Both lemmas can be proved with the Lagrange multipliers.
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CP decomposition of A € RM*mxxnd

It factorizes a tensor into a sum of rank one tensors.

Wi
= + ot

CP decomposition of a 3-dimensional tensor.

A= Z Ui(;, @) o Ua(ya) 0+ 0 Ug(:, @)

It can be concisely expressed as A = [Uy, Uy, -+, Ug]. CP decomposition for a
3-dimensional tensor in matricized form can be written as:

Aqy=U(Us © Ua)7, Ay = Us(Us © Ur)T Ay = Us(Ur @ Uy)T.

It is useful to assume that U, U,--- Uy are normalized to length one with the
weights given in a vector A € R".
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CP-ALS algorithm for a 3-dimensional tensor A

Repeat until maximum iterations reached or no further improvement obtained
@ Solve Uy(Us ® Up)T = Ay for Uy = Uy = Airy(Us © Ua) (U5 Us x Uf L)t
@ Normalize columns of U;
© Solve Up(Us ® Uy)T = Ay for Up = Up = Ap)(Us ® Ur) (U5 Us = U] Uy)t
@ Normalize columns of U,

Q Solve Us(U, ® Up)T = Ag) for Us = Us = A3y (U2 © Ur)(US Uy + Uy Uy)T

@ Normalize columns of Us

Here A" denotes the Moore—Penrose pseudoinverse of A. We use the following
identity to get expressions for Uy, U, and Us:

(A©B)" (A0 B)=ATAxB'B
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ALS for computing a CP decomposition

Algorithm 1 CP-ALS method to compute CP decomposition

Require: input tensor A € R™M* %" desired rank k, initial factor matrices
UJ-GR”JkaorISde
Ensure: [\; Ui, -+, Uq] : a rank-k CP decomposition of A
repeat
for i=1to d do
V UirUl EIRITIEEE 3 U,-T_1Ui—1U,?|_—~_1Ui+1 E IR 3 UJUd
U; + A(,-)(Ud ©- 0O Uy 0 U~ 0 U)
U,' — U,' VT
A 4= normalize colums of U;
end for
until converge or the maximum number of iterations

@ The collective operation A(,-)(Ud © O U1 ®Ui—1 ® Uy) is known as
Matricized tensor times Khatri-Rao product (MTTKRP) computation
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Gradient based CP decomposition

F = min ||A [[U17U25U3HH%

Ui,U2Us

Gradients:

S

OF

v, —Gy(Us © Us)
OF
oUs = —Gp)(Us © Ur)

OF
(97U3 = —G(3)(U2 © Ul)

2(A —[Uy, Us, Us])

Update U;, U, and Uz based on gradients until convergence or for the fixed
number of iterations

Gradient based algorithm also employs MTTKRP computations
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MTTKRP

We want to find R-rank CP decomposition of A € R™*"**"4 The corresponding
MTTKRP operation is

U; A(;)(Ud [OEERNO) U,'+1 oU_106 Ul).
Two approaches to compute this operation:
@ Conventional approach

e Compute Khatri-Rao products in a temporary T
o Multiply A¢;y with the temporary T, U; = AT
o Total arithmetic cost = O(NR)

@ All-at-once approach

UiGi, r) = Yo Aln-da) [ Uklior)
Jist e dim1sJit1y e dd keld]—{i}
o Total arithmetic cost = O(dNR)

o No intermediate is formed (may limit the partial reuse)
o Very useful to work with sparse tensor

nyny - -+ ng is denoted by N through out the slides. We will mainly focus on

all-at-once approach. This approach reduces communication.
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MTTKRP all-at-once pseudo code

For {Jl =1to n1}

For {jg =1 to ng4}
For {r =1 to R}
Ui, )+ = A, ---da) - [] Ukl r)
keld]—{i}
Total number of loop iterations = NR

We assume that the innermost computation is performed atomically. This is
required for the communication lower bounds.

@ Sequential case : all the inputs are present in the memory when the single
output value is updated

@ Parallel case: all the multiplications of this computation are performed on
only one processor
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A matrix for MTTKRP

A U - U - Uy
/1 1
A~ Ji 1 1
Jd 1 1
r 1 1 1
@ To obtain tight lower bound, find s = [s1,--- ,s4]" such that A-s=1

11 1

.
— |12 = ... =
> [ d'd’ ’d]
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Analysis of a segment

We consider a segment of M loads and stores. Any algorithm in the segment can
access at most 3M elements.

@ Output: at most M elements can be live after each segment & M — L
elements written to the slow memory

@ Inputs: at most M elements are available at the start of the segment & L
elements loaded to the fast memory

Let F be the subset of iteration space evaluated during the segment. ¢;(F)
denotes the projection of F on the i-th variable.

Optimization problem:

Maximize |F| subject to

Fl< T ledF)

i€[d+1]

> lei(F) <3m

ie[d+1]
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Communication lower bound

After solving the optimization problem, we get

1 1 2—1/d 1
A< (5o) Q-1 EmpE e < Sempe

Q.

Any sequential MTTKRP algorithm performs at least 7= L = Ml NF /d — M loads and
stores.

Proof: Data transfer lower bound = LN J M > (IF\ ) M= 2 iR — M

Any parallel MTTKRP algorithm performs at least dNR__ _ M sends and

32— l/d PMI-1/d
receives.

Proof: There must be a processor which performs at least & - R loop iterations,
applying the previous theorem for this processor yields the mentioned bound.
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Generalized size of a segment

We are interested to know how many loop iterations we can perform by accessing
A elements.

Optimization problem:

Maximize |Fp+a| subject to
Fual < T I0i(F)I

ield+1]

D 1Al <M+ A

i€ld+1]
Data transfer lower bound = L NR J A> (L - )A
[Fhial [Frtal

We select A such that the bound is maximum.
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Communication optimal sequential algorithm

We select a block size b such that b9 + db < M.
@ Loop over b x --- x b blocks of the tensor

@ With block in memory, loop over subcolumns of input factor matrices and
update corresponding subcolumn of output matrix

Sequential block algorithm for
Amount of data transfer is bounded by d=3:

N+ 5] 15 Red+ e, e

With b~ M/, data transfer cost = 1
U] 1
dNR i 4
O<N+Ml—1/d) b ”’
CEC TP

U

v
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Comparisons

Lower Bound All-at-once Conventional (MM)
Flops - dNR INR
Words | Q(gtz) O(N+5t5)  O(N+5%)
Temp Mem - _ NR

@ All-at-once approach performs g more flops than the conventional approach

@ For relatively small R, N term dominates communication

o This is the typical case in practice

@ For relatively large R, all-at-once approach based algorithm communicates

less

e better exponent on M
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Settings to compute parallel communication lower bound

@ The algorithm load balances the computation — each processor performs
NR/P number of loop iterations

@ One copy of data is in the system

o There exists a processor whose input data at the start plus output data

N+ niR
at the end must be at most +E+1"

data transfers for this processor

words — will analyze amount of
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Communication lower bound

Let F be the subset of iteration space evaluated on a processor oi
the projection of F on the i-th variable. We recall that s" [1 —

Optimization problem:

Minimize Z |¢i(F)| subject to
ie[d+1]

LR INTGE

l€[d+1]
After solving the above optimization we obtain,

() G2 ()

S;
l i Hi si’ P
i€[d+1]

Communication lower bound = Z |pi(F)| — data owned by the processor

i€[d+1]
d
Lo (VR 1 N+ YL R
P P
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Sketch of communication optimal algorithm for d = 3

Assume that the required rank (R) is small. We do not need to communicate
tensor in this setting. Suppose we want to update U,.

Each processor

@ Starts with one subtensor and subset of
rows of each input factor matrix

Uy

s
Ux
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Sketch of communication optimal algorithm for d = 3

Assume that the required rank (R) is small. We do not need to communicate
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Uy
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Sketch of communication optimal algorithm for d = 3

Assume that the required rank (R) is small. We do not need to communicate
tensor in this setting. Suppose we want to update U,.

Each processor

@ Starts with one subtensor and subset of
rows of each input factor matrix

@ All-Gathers all the rows needed from U;
© All-Gathers all the rows needed from Us

@ Computes its contribution to rows of U,
(local MTTKRP)

Uy

s
Ux
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Sketch of communication optimal algorithm for d = 3
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f communication optimal algorithm for d = 3

Assume that the required rank (R) is small. We do not need to communicate
tensor in this setting. Suppose we want to update U,.

Each processor

@ Starts with one subtensor and subset of
rows of each input factor matrix

All-Gathers all the rows needed from U;

U All-Gathers all the rows needed from Us

Computes its contribution to rows of U
(local MTTKRP)

b Reduce-Scatters to compute and distribute
Us U, evenly

© 0600
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Parallel communication optimal MTTKRP algorithm

Algorithm 2 Parallel MTTKRP algorithm

Require: input tensor A € R™* %" factor matrices U; € R%*F for 1 < j < d, mode
Jj, P processors are arranged in pp X p1 X --- X pg logical processor grid
Ensure: Updated U;

1: (py, pi,- -+, py) is my processor id

2: //All-gather input tensor

3t Apy oy = All-Gather(A, (x, p1, -, py))

4: //All-gather factor matrices except U;

5: for k € [d] — {j} do

6: (Uk)p(’),p,’( = AII-Gather(Uk, (p(,), koo ok, p;(, Ky e 7>l<))

7: end for

8: //Compute local MTTKRP

9: T = Local-MTTKRP (AP{,W P> (Uk)P(’),PL’j)

10: //Reduce scatter along the processors which have same py and pj
11: Reduce—Scatter((Uj)pé,pjg, T, (P05 %, Py, 5 %))
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Communication cost

~d
We set po ~ R and py ~ —%— for k € [d].
e set po = and py Y or k € [d]

Communication cost of the algorithm with the above processor grid is

d
dNR 71
0<P> |
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@ Tight communication lower bounds for MTTKRP with small P and
rectangular factor matrices

Cost analysis of several ways to perform MTTKRP

Amount of reuse across multiple MTTKRPs

Optimal cost of CP-ALS algorithm for an iteration (or for a set of
d-iterations)
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