Matricized tensor times Khatri-Rao product computation

Suraj Kumar

Inria & ENS Lyon Email:suraj.kumar@ens-lyon.fr

CR12: October 2024 https://surakuma.github.io/courses/daamtc.html

4 0 8

Loomis-Whitney inequality

- Relates volume of a d-dimensional object with its all $d 1$ dimensional projections
	- For the 2d object G, Area(G) $\leq \phi_x \phi_y$
	- For the 3d object H , $\mathit{Volume}(H) \leq \sqrt{\phi_{xy} \phi_{yz} \phi_{xz}}$

- Similarly, for a 4d object *I*, $Volume(I) \leq \phi_{\rm xyz}^{\frac{1}{3}}\phi_{\rm xyw}^{\frac{1}{3}}\phi_{\rm zxw}^{\frac{1}{3}}\phi_{\rm yzw}^{\frac{1}{3}}$
- How to work with arbitrary dimensional projections?

つひひ

Hölder-Brascamp-Lieb (HBL) inequality

- Generalize Loomis-Whitney inequality for arbitrary dimensional projections
- Provide exponent for each projection

Lemma

Consider any positive integers ℓ and m and any m projections $\phi_j : \mathbb{Z}^\ell \to \mathbb{Z}^\ell$ $(\ell_i \leq \ell)$, each of which extracts ℓ_i coordinates $S_i \subseteq [\ell]$ and forgets the $\ell - \ell_i$ others. Define $\mathcal{C}=\{\mathsf{s}\in[0,1]^m:\Delta\cdot\mathsf{s}\ge 1\}$, where the $\ell\times m$ matrix Δ has entries $\Delta_{i,j}=1$ if $i\in S_j$ and $\Delta_{i,j}=0$ otherwise. If $[s_1 \ \cdots \ s_m]^\mathsf{T}\in \mathcal{C}$, then for all $F\subseteq \mathbb{Z}^\ell$,

$$
|F| \leq \prod_{j \in [m]} |\phi_j(F)|^{s_j}.
$$

• For tighter bound, we usually work with $\Delta \cdot s = 1$

• Possible that $\Delta \cdot s = 1$ does not have solution, then consider s such that $\Delta \cdot s$ is not very far from 1

Notation: 1 represents a vector of all ones. $[m]$ denotes $\{1, 2, \cdots, m\}$ throughout the slides. イロメ イ部メ イヨメ イヨメー 298

HBL inequality

Lemma

Consider any positive integers ℓ and m and any m projections $\phi_j : \mathbb{Z}^\ell \to \mathbb{Z}^{\ell_j}$ $(\ell_j \leq \ell),$ each of which extracts ℓ_j coordinates $S_j \subseteq [\ell]$ and forgets the $\ell - \ell_j$ others. Define $\mathcal{C} = \big\{ \mathsf{s} \in [0,1]^m : \Delta \cdot \mathsf{s} \geq 1 \big\}$, where the $\ell \times m$ matrix Δ has entries $\Delta_{i,j}=1$ if $i\in\mathcal{S}_j$ and $\Delta_{i,j}=0$ otherwise. If $[s_1 \ \cdots \ s_m]^\mathsf{T}\in\mathcal{C}$, then for all $F\subseteq\mathbb{Z}^\ell$, $|F| \leq \prod |\phi_j(F)|^{s_j}.$ j∈[m]

Matrix multiplication $(C = AB)$ example

Here $A \in \mathbb{R}^{n_1 \times n_2}$, $B \in \mathbb{R}^{n_2 \times n_3}$, and $C \in \mathbb{R}^{n_1 \times n_3}$.

for
$$
i = 1:n_1
$$
, for $k = 1:n_2$, for $j = 1:n_3$
\n
$$
C[i][j] += A[i][k] * B[k][j]
$$

$$
\Delta = \begin{array}{cc} i & 0 & 1 \\ j & 0 & 1 \\ k & 1 & 1 \end{array}
$$

 A R C

• Find
$$
s = [s_1 \ s_2 \ s_3]^T
$$
 such that $\Delta \cdot s = 1$

 \bullet ϕ_A , ϕ_B , ϕ_C : projections of computations on arrays A, B, C

<code>H[B](#page-4-0)L</code> inequality: amount of computations $\leq |\phi_A|^{s_1}|\phi_B|^{s_2}|\phi_C|^{s_3}$ $\leq |\phi_A|^{s_1}|\phi_B|^{s_2}|\phi_C|^{s_3}$ $\leq |\phi_A|^{s_1}|\phi_B|^{s_2}|\phi_C|^{s_3}$ $\leq |\phi_A|^{s_1}|\phi_B|^{s_2}|\phi_C|^{s_3}$ $\leq |\phi_A|^{s_1}|\phi_B|^{s_2}|\phi_C|^{s_3}$ $\leq |\phi_A|^{s_1}|\phi_B|^{s_2}|\phi_C|^{s_3}$ $\leq |\phi_A|^{s_1}|\phi_B|^{s_2}|\phi_C|^{s_3}$

Suraj Kumar (Inria & ENS Lyon) [MTTKRP](#page-0-0) CR12 4/28

It can be used to obtain sequential or parallel communication lower bound.

Sequential lower bound formulation for matrix multiplication:

- Determine maximum amount of computations under segment size constraint: *Maximize* $|\phi_A|^{s_1}|\phi_B|^{s_2}|\phi_C|^{s_3}$ s.t. $|\phi_A| + |\phi_B| + |\phi_C| <= \textit{Const}$
- Calculate total data transfers for all the segments

Parallel lower bound formulation for matrix multiplication:

- Determine the sum of array accesses to perform the required computations
	- Minimize $|\phi_A| + |\phi_B| + |\phi_C|$ s.t. amount of computations $\leq |\phi_A|^{s_1}|\phi_B|^{s_2}|\phi_C|^{s_3}$

つへへ

Optimization problems [Ballard et al., IPDPS 2017]

Lemma

Given $s_i > 0$, the optimization problem

$$
\max_{x_i \geq 0} \prod_{i \in [m]} x_i^{s_i} \text{ subject to } \sum_{i \in [m]} x_i \leq c
$$

yields the maximum value

$$
c^{\sum_i s_i} \prod_{j \in [m]} \left(\frac{s_j}{\sum_i s_i} \right)^{s_j}.
$$

Lemma

Given $s_i > 0$, the optimization problem

$$
\min_{x_i \geq 0} \sum_{i \in [m]} x_i
$$
 subject to
$$
\prod_{i \in [m]} x_i^{s_i} \geq c
$$

yields the minimum value

$$
\left(\frac{c}{\prod_i s_i^{s_i}}\right)^{\sum_i^1 s_i} \sum_{j\in [m]} s_j.
$$

Both lemmas can be proved with the Lagrange multiplier[s.](#page-4-0)

Suraj Kumar (Inria & ENS Lyon) [MTTKRP](#page-0-0) CR12 6/28

1 [CP decomposition](#page-6-0)

[Matricized tensor times Khatri-Rao product \(MTTKRP\)](#page-11-0)

Suraj Kumar (Inria & ENS Lyon) [MTTKRP](#page-0-0) CR12 7/28

4 **D F**

э \blacktriangleright \blacktriangleleft э 299

CP decomposition of $A \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}$

It factorizes a tensor into a sum of rank one tensors.

CP decomposition of a 3-dimensional tensor.

$$
\mathcal{A} = \sum_{\alpha=1}^r U_1(:,\alpha) \circ U_2(:,\alpha) \circ \cdots \circ U_d(:,\alpha)
$$

It can be concisely expressed as $\mathcal{A} = [\![U_1, U_2, \cdots, U_d]\!]$. CP decomposition for a 3-dimensional tensor in matricized form can be written as:

$$
A_{(1)} = U_1 (U_3 \odot U_2)^T, \ A_{(2)} = U_2 (U_3 \odot U_1)^T \ A_{(3)} = U_3 (U_2 \odot U_1)^T.
$$

It is useful to assume that $U_1, U_2 \cdots U_d$ are normalized to length one with the weights given in a vector $\lambda \in \mathbb{R}^r$.

Suraj Kumar (Inria & ENS Lyon) [MTTKRP](#page-0-0) CR12 8/28

CP-ALS algorithm for a 3-dimensional tensor $\mathcal A$

Repeat until maximum iterations reached or no further improvement obtained

- ${\bf C}$ Solve $U_1 (U_3 \odot U_2)^{\sf \scriptscriptstyle T} = A_{(1)}$ for $U_1 \Rightarrow U_1 = A_{(1)} (U_3 \odot U_2) (U_3^{\sf \scriptscriptstyle T} U_3 * U_2^{\sf \scriptscriptstyle T} U_2)^{\dagger}$
- \bullet Normalize columns of U_1
- \bullet Solve $\mathcal{U}_2 (\mathcal{U}_3 \odot \mathcal{U}_1)^{\mathcal{T}} = \mathcal{A}_{(2)}$ for $\mathcal{U}_2 \Rightarrow \mathcal{U}_2 = \mathcal{A}_{(2)} (\mathcal{U}_3 \odot \mathcal{U}_1) (\mathcal{U}_3^{\mathcal{T}} \mathcal{U}_3 \ast \mathcal{U}_1^{\mathcal{T}} \mathcal{U}_1)^{\dagger}$
- \bullet Normalize columns of U_2
- \bullet Solve $\mathcal{U}_3(\mathcal{U}_2\odot\mathcal{U}_1)^{\mathcal{T}}= \mathcal{A}_{(3)}$ for $\mathcal{U}_3 \Rightarrow \mathcal{U}_3 = \mathcal{A}_{(3)}(\mathcal{U}_2\odot\mathcal{U}_1)(\mathcal{U}_2^{\mathcal{T}}\mathcal{U}_2*\mathcal{U}_1^{\mathcal{T}}\mathcal{U}_1)^{\dagger}$
- Normalize columns of U_3

Here A^{\dagger} denotes the Moore–Penrose pseudoinverse of A. We use the following identity to get expressions for U_1, U_2 and U_3 :

$$
(A \odot B)^{T} (A \odot B) = A^{T} A * B^{T} B
$$

 Ω

지수는 지금 아버지를 지나가 되었다.

ALS for computing a CP decomposition

Algorithm 1 CP-ALS method to compute CP decomposition

Require: input tensor $\mathcal{A} \in \mathbb{R}^{n_1 \times \cdots \times n_d}$, desired rank k, initial factor matrices $U_j \in \mathbb{R}^{n_j \times k}$ for $1 \leq j \leq d$ **Ensure:** $[\![\lambda; U_1, \cdots, U_d]\!]$: a rank-k CP decomposition of A repeat for $i = 1$ to d do $V \leftarrow U_1^{\mathsf{T}} U_1 \ast \cdots \ast U_{i-1}^{\mathsf{T}} U_{i-1} U_{i+1}^{\mathsf{T}} U_{i+1} \ast \cdots \ast U_d^{\mathsf{T}} U_d$ $U_i \leftarrow A_{(i)} (U_d \odot \cdots \odot U_{i+1} \odot U_{i-1} \odot U_1)$ $U_i \leftarrow U_i V^{\dagger}$ $\lambda \leftarrow$ normalize colums of U_i end for until converge or the maximum number of iterations

 \bullet The collective operation $A_{(i)}(U_d \odot \cdots \odot U_{i+1} \odot U_{i-1} \odot U_1)$ is known as Matricized tensor times Khatri-Rao product (MTTKRP) computation

 QQ

◆ロト→個ト→重ト→重ト→重

Gradient based CP decomposition

$$
F = \min_{U_1, U_2 U_3} ||\mathcal{A} - [[U_1, U_2, U_3]]||^2_F
$$

Gradients:

$$
G = 2(\mathcal{A} - [\![U_1, U_2, U_3]\!])
$$

\n
$$
\frac{\partial F}{\partial U_1} = -G_{(1)}(U_3 \odot U_2)
$$

\n
$$
\frac{\partial F}{\partial U_2} = -G_{(2)}(U_3 \odot U_1)
$$

\n
$$
\frac{\partial F}{\partial U_3} = -G_{(3)}(U_2 \odot U_1)
$$

Update U_1, U_2 and U_3 based on gradients until convergence or for the fixed number of iterations

Gradient based algorithm also employs MTTKRP computations.

◂**◻▸ ◂◚▸**

[CP decomposition](#page-6-0)

2 [Matricized tensor times Khatri-Rao product \(MTTKRP\)](#page-11-0)

イロト

3 (금) - 3 금

 298

MTTKRP

We want to find R-rank CP decomposition of $\mathcal{A} \in \mathbb{R}^{n_1 \times \cdots \times n_d}$. The corresponding MTTKRP operation is

$$
U_i \leftarrow A_{(i)}(U_d \odot \cdots \odot U_{i+1} \odot U_{i-1} \odot U_1).
$$

Two approaches to compute this operation:

- **•** Conventional approach
	- \bullet Compute Khatri-Rao products in a temporary T
	- Multiply $A_{(i)}$ with the temporary T, $U_i = A_{(i)}T$
	- Total arithmetic cost = $\mathcal{O}(NR)$
- All-at-once approach

$$
U_i(j_i,r)=\sum_{j_1,\cdots,j_{i-1},j_{i+1},\cdots,j_d}\mathcal{A}(j_1,\cdots,j_d)\prod_{k\in [d]-\{i\}}U_k(j_k,r)
$$

- Total arithmetic cost $= \mathcal{O}(dNR)$
- No intermediate is formed (may limit the partial reuse)
- Very useful to work with sparse tensor

 $n_1 n_2 \cdots n_d$ is denoted by N through out the slides. We will mainly focus on all-at-once approach. This approach reduces commu[nic](#page-11-0)a[ti](#page-13-0)[on](#page-11-0)[.](#page-12-0)

Suraj Kumar (Inria & ENS Lyon) [MTTKRP](#page-0-0) CR12 13/28

 QQ

For
$$
\{j_1 = 1 \text{ to } n_1\}
$$

\n
\nFor $\{j_d = 1 \text{ to } n_d\}$
\nFor $\{r = 1 \text{ to } R\}$
\n
$$
U_i(j_i, r) + = A(j_1, \dots, j_d) \cdot \prod_{k \in [d] - \{i\}} U_k(j_k, r)
$$

Total number of loop iterations $= NR$

We assume that the innermost computation is performed atomically. This is required for the communication lower bounds.

- \bullet Sequential case : all the inputs are present in the memory when the single output value is updated
- *Parallel case*: all the multiplications of this computation are performed on only one processor

 QQ

イロト イ押 トイヨ トイヨト

2 [Matricized tensor times Khatri-Rao product \(MTTKRP\)](#page-11-0) **•** [Sequential case](#page-14-0)

[Parallel case](#page-21-0)

4 **D F**

→ + B

 QQ

∆ matrix for MTTKRP

$$
\Delta = \begin{bmatrix}\nA & U_1 & \cdots & U_i & \cdots & U_d \\
\vdots & \vdots & & & & \\
J_d & 1 & & & & \\
\vdots & \vdots & & & & \\
J_d & 1 & & & & & \\
& & & I & & & & \\
& & & & & & & 1\n\end{bmatrix}
$$

To obtain tight lower bound, find $\bm{\mathsf{s}}=[\mathsf{s}_1,\cdots,\mathsf{s}_d]^\mathsf{T}$ such that $\Delta\cdot\bm{\mathsf{s}}=1$

$$
\mathbf{s}^{\mathsf{T}} = \left[1 - \frac{1}{d}, \frac{1}{d}, \cdots, \frac{1}{d}\right]
$$

イロト イ押ト イヨト イヨ

 298

Analysis of a segment

We consider a segment of M loads and stores. Any algorithm in the segment can access at most 3M elements.

- \bullet Output: at most M elements can be live after each segment & $M L$ elements written to the slow memory
- \bullet Inputs: at most M elements are available at the start of the segment & L elements loaded to the fast memory

Let F be the subset of iteration space evaluated during the segment. $\phi_i(F)$ denotes the projection of F on the *i*-th variable.

Optimization problem:

```
Maximize |F| subject to
              |F| \leq \prod |\phi_i(F)|^{s_i}i \in [d+1]\sum |\phi_i(F)| \leq 3Mi \in [d+1]
```
∢ □ ▶ ⊣ 倒 ▶

 QQ

Communication lower bound

After solving the optimization problem, we get

$$
|\mathcal{F}| \leq \frac{1}{d} \left(\frac{1}{2-1/d} \right)^{2-1/d} (1-1/d)^{1-1/d} (3M)^{2-1/d} \leq \frac{1}{d} (3M)^{2-1/d}
$$

Theorem

Any sequential MTTKRP algorithm performs at least $\frac{1}{3^{2-1/d}}\frac{d\mathsf{NR}}{M^{1-1/d}}-\mathsf{M}$ loads and stores.

Proof: Data transfer lower bound $=\left\lfloor\frac{NR}{|F|}\right\rfloor$ $M\geq\left(\frac{NR}{|F|}-1\right)$ $M=\frac{1}{3^{2-1/d}}\frac{dNR}{M^{1-1/d}}-M$

Corollary

Any parallel MTTKRP algorithm performs at least $\frac{1}{3^{2-1/d}}\frac{d\mathsf{NR}}{\mathsf{PM}^{1-1/d}} - \mathsf{M}$ sends and receives.

Proof: There must be a processor which performs at least $\frac{NR}{P}$ loop iterations, applying the previous theorem for this processor yiel[ds t](#page-16-0)[he](#page-18-0) [m](#page-16-0)[e](#page-17-0)[nt](#page-18-0)[i](#page-13-0)[o](#page-14-0)[n](#page-20-0)[ed](#page-21-0) [b](#page-11-0)[ou](#page-32-0)[nd](#page-0-0)[.](#page-32-0)

K ロ ▶ K 御 ▶ K ミ ▶ K 등

 QQ

.

We are interested to know how many loop iterations we can perform by accessing A elements.

Optimization problem:

$$
\begin{aligned}\n\text{Maximize } |F_{M+A}| & \text{subject to} \\
|F_{M+A}| &\leq \prod_{i \in [d+1]} |\phi_i(F)|^{s_i} \\
&\geq \prod_{i \in [d+1]} |\phi_i(F)| \leq M + A\n\end{aligned}
$$

Data transfer lower bound =
$$
\left\lfloor \frac{NR}{|F_{M+A}|} \right\rfloor A \ge \left(\frac{NR}{|F_{M+A}|} - 1 \right) A
$$

We select A such that the bound is maximum.

4 0 8

Communication optimal sequential algorithm

We select a block size b such that $b^d+db\leq M.$

- **1** Loop over $b \times \cdots \times b$ blocks of the tensor
- ² With block in memory, loop over subcolumns of input factor matrices and update corresponding subcolumn of output matrix

Amount of data transfer is bounded by

$$
N+\left\lceil\frac{n_1}{b}\right\rceil\cdots\left\lceil\frac{n_d}{b}\right\rceil\cdot R(d+1)b.
$$

With $b \approx M^{1/d}$, data transfer cost $=$

$$
\mathcal{O}\left(N+\frac{dNR}{M^{1-1/d}}\right)
$$

Sequential block algorithm for $d = 3$:

- All-at-once approach performs $\frac{d}{2}$ more flops than the conventional approach
- \bullet For relatively small R , N term dominates communication
	- This is the typical case in practice
- \bullet For relatively large R , all-at-once approach based algorithm communicates less
	- better exponent on M

[Parallel case](#page-21-0)

4 **D F**

→ + B

 299

• The algorithm load balances the computation – each processor performs NR/P number of loop iterations

- One copy of data is in the system
	- There exists a processor whose input data at the start plus output data at the end must be at most $\frac{N+\sum_{i=1}^d n_iR}{P}$ words – will analyze amount of data transfers for this processor

Communication lower bound

Let F be the subset of iteration space evaluated on a processor. $\phi_i(F)$ denotes the projection of F on the *i*-th variable. We recall that $\mathsf{s}^{\mathsf{T}} = \left[1 - \frac{1}{d}, \frac{1}{d}, \cdots, \frac{1}{d}\right]$. Optimization problem:

Minimize
$$
\sum_{i \in [d+1]} |\phi_i(F)|
$$
 subject to

$$
\frac{NR}{P} \le \prod_{i \in [d+1]} |\phi_i(F)|^{s_i}
$$

After solving the above optimization we obtain,

$$
\sum_{i\in[d+1]}|\phi_i(F)|=\left(\sum_{i}s_i\right)\left(\frac{\mathsf{NR}/\mathsf{P}}{\prod_i s_i^{s_i}}\right)^{1/\sum_i s_i}=(2-1/d)\left(\frac{\mathsf{NR}/\mathsf{P}}{\prod_i s_i^{s_i}}\right)^{\frac{d}{2d-1}}\geq 2\left(\frac{\mathsf{d}\mathsf{NR}}{\mathsf{P}}\right)^{\frac{d}{2d-1}}
$$

.

Communication lower bound $\;=\;\sum\; \; |\phi_i({F})| - {\sf data}$ owned by the processor $i \in [d+1]$ \geq 2 $\left(\frac{dNR}{R}\right)$ P $\sum_{i=1}^{\frac{d}{2d-1}} - \frac{N + \sum_{i=1}^{d} n_i R_i}{D_i}$ [P](#page-22-0)

Each processor

1 Starts with one subtensor and subset of rows of each input factor matrix

Each processor

- **1** Starts with one subtensor and subset of rows of each input factor matrix
- **2** All-Gathers all the rows needed from U_1

Each processor

- **1** Starts with one subtensor and subset of rows of each input factor matrix
- **2** All-Gathers all the rows needed from U_1
- \bullet All-Gathers all the rows needed from U_3

Each processor

- **1** Starts with one subtensor and subset of rows of each input factor matrix
- **2** All-Gathers all the rows needed from U_1
- \bullet All-Gathers all the rows needed from U_3
- 4 Computes its contribution to rows of U_2 (local MTTKRP)

Each processor

- **1** Starts with one subtensor and subset of rows of each input factor matrix
- **2** All-Gathers all the rows needed from U_1
- \bullet All-Gathers all the rows needed from U_3
- 4 Computes its contribution to rows of U_2 (local MTTKRP)

Each processor

- **1** Starts with one subtensor and subset of rows of each input factor matrix
- **2** All-Gathers all the rows needed from U_1
- \bullet All-Gathers all the rows needed from U_3
- 4 Computes its contribution to rows of U_2 (local MTTKRP)
- **5** Reduce-Scatters to compute and distribute U_2 evenly

Algorithm 2 Parallel MTTKRP algorithm

Require: input tensor $\mathcal{A}\in\mathbb{R}^{n_1\times\cdots\times n_d}$, factor matrices $U_j\in\mathbb{R}^{n_j\times R}$ for $1\leq j\leq d$, mode j, P processors are arranged in $p_0 \times p_1 \times \cdots \times p_d$ logical processor grid **Ensure:** Updated U_i $1: (p_0', p_1', \cdots, p_d')$ is my processor id 2: //All-gather input tensor 3: $\mathcal{A}_{p'_1, \cdots, p'_d} = \text{All-Gather}(\mathcal{A},(*, p'_1, \cdots, p'_d))$ 4: //All-gather factor matrices except U_i 5: for $k \in [d] - \{i\}$ do 6: $(U_k)_{p'_0, p'_k} = \text{All-Gather}(U_k, (p'_0, \texttt{*}, \cdots, \texttt{*}, p'_k, \texttt{*}, \cdots, \texttt{*}))$ 7: end for 8: //Compute local MTTKRP 9: $\mathcal{T} = \mathsf{Local-MTTKRP} \left(\mathcal{A}_{\rho'_1, \cdots, \rho'_d}, (U_k)_{\rho'_0, \rho'_k}, j \right)$ 10: //Reduce scatter along the processors which have same p_0^{\prime} and p_j^{\prime} 11: Reduce-Scatter $((U_j)_{\rho'_0,\rho'_j},\mathcal T,(\rho'_0,*,\cdots,*,\rho'_j,*,\cdots,*))$

イロト イ母 トイヨ トイヨト

We set
$$
p_0 \approx \frac{(dR)^{\frac{d}{2d-1}}}{(N/P)^{\frac{d-1}{2d-1}}}
$$
 and $p_k \approx \frac{n_k}{(Np_0/P)^{\frac{1}{d}}}$ for $k \in [d]$.

Communication cost of the algorithm with the above processor grid is

$$
\mathcal{O}\left(\frac{dNR}{P}\right)^{\frac{d}{2d-1}}
$$

.

Suraj Kumar (Inria & ENS Lyon) [MTTKRP](#page-0-0) CR12 27/28

 298

 $A \Box B$ A

• Tight communication lower bounds for MTTKRP with small P and rectangular factor matrices

● Cost analysis of several ways to perform MTTKRP

Amount of reuse across multiple MTTKRPs

Optimal cost of CP-ALS algorithm for an iteration (or for a set of d-iterations)