Multiple Tensor Times Matrix computation

Suraj Kumar

Inria & ENS Lyon Email:suraj.kumar@ens-lyon.fr

CR12: October 2024 https://surakuma.github.io/courses/daamtc.html

4 0 8

 $2Q$

Tucker decomposition of $\mathfrak{X} \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}$

It represents a tensor with d matrices (usually orthonormal) and a small core tensor.

Tucker decomposition of a 3-dimensional tensor.

$$
\mathfrak{X} = \mathcal{Y} \times_1 \mathsf{A}^{(1)} \cdots \times_d \mathsf{A}^{(d)}
$$

$$
\mathfrak{X}(i_1, \cdots, i_d) = \sum_{\alpha_1=1}^{r_1} \cdots \sum_{\alpha_d=1}^{r_d} \mathcal{Y}(\alpha_1, \cdots, \alpha_d) \mathsf{A}^{(1)}(i_1, \alpha_1) \cdots \mathsf{A}^{(d)}(i_d, \alpha_d)
$$

It can be concisely expressed as $\mathcal{X} = [\![\boldsymbol{\mathcal{Y}};\mathsf{A}^{(1)},\cdots,\mathsf{A}^{(d)}]\!]$.

Here r_j for $1\leq j\leq d$ denote a set of ranks. Matrices $\mathsf{A}^{(j)}\in\mathbb{R}^{n_j\times r_j}$ for $1\leq j\leq d$ are usually orthonormal and known as factor matrices. The tensor $\bm{\mathcal{Y}}\in\mathbb{R}^{r_1\times r_2\times\cdots\times r_a}$ is called the core tensor. Ω

Suraj Kumar (Inria & ENS Lyon) [Multi-TTM](#page-0-0) CR12 2/25

Algorithm 1 HOSVD method to compute a Tucker decomposition

Required: input tensor
$$
\mathcal{X} \in \mathbb{R}^{n_1 \times \cdots \times n_d}
$$
, desired rank (r_1, \cdots, r_d)
Ensure: $\mathcal{X} = \mathcal{Y} \times_1 A^{(1)} \times_2 A^{(2)} \cdots \times_d A^{(d)}$

- 1: for $k = 1$ to d do
- 2: $A^{(k)} \leftarrow r_k$ leading left singular vectors of $X_{(k)}$
- 3: end for
- 4: $\mathcal{Y} = \mathcal{X} \times_1 \mathsf{A}^{(1)^{\mathsf{T}}} \times_2 \mathsf{A}^{(2)^{\mathsf{T}}} \cdots \times_d \mathsf{A}^{(d)^{\mathsf{T}}}$

- When $r_i < rank(X_{(i)})$ for one or more i, the decomposition is called the truncated-HOSVD (T-HOSVD)
- The collective operation $\mathfrak{X}\times_{1} {\overline{\mathsf{A}^{(1)}}}^{\textsf{T}} \times_{2} {\overline{\mathsf{A}^{(2)}}}^{\textsf{T}} \cdots \times_{d} {\overline{\mathsf{A}^{(d)}}}^{\textsf{T}}$ is known as Multiple Tensor-Times-Matrix (Multi-TTM) computation

 200

イロト イ部 トイ君 トイ君 トー

Sequentially T-HOSVD (ST-HOSVD) for Tucker decomposition

- **•** This method is more work efficient than T-HOSVD
- **•** In each step, it reduces the size of one dimension of the tensor

Algorithm 2 ST-HOSVD method to compute a Tucker decomposition

Require: input tensor $\mathfrak{X}\in \mathbb{R}^{n_1\times \cdots \times n_d}$, desired rank (r_1,\cdots,r_d) **Ensure:** $[\mathcal{Y}; A^{(1)}, \cdots, A^{(d)}]$: a (r_1, \cdots, r_d) -rank Tucker decomposition of \mathcal{X}
1. $\mathcal{W} \leftarrow \mathcal{X}$ 1: $\mathcal{W} \leftarrow \mathcal{X}$ 2: for $k = 1$ to d do 3: $A^{(k)} \leftarrow r_k$ leading singular vectors of $W_{(k)}$ 4: $\boldsymbol{\mathcal{W}} \leftarrow \boldsymbol{\mathcal{W}} \times_k \mathsf{A}^{(k)}^\mathsf{T}$ 5: end for 6: $Y = W$

We can note that ST-HOSVD also performs Multi-TTM computation by doing a sequence of TTM operations, i.e, $\bm{\mathcal{Y}} = ((\bm{\mathcal{X}} \times_1 {{\mathsf{A}^{(1)}}}^\mathsf{T}) \times_2 {{\mathsf{A}^{(2)}}}^\mathsf{T}) \cdots \times_d {{\mathsf{A}^{(d)}}}^\mathsf{T}$. メロトメ 御 トメ 差 トメ 差 トー

 QQ

• Multi-TTM becomes the overwhelming bottleneck computation when

- Matrix SVD costs are reduced using randomization via sketching or
- $\bm{\mathsf{A}}^{(k)}$ are computed with eigen value decompositions of $\bm{\mathsf{X}}_{(k)}\bm{\mathsf{X}}_{(k)}^{\mathcal{T}}$ (or $W_{(k)}W_{(k)}^{T}$

Multi-TTM computation

Let $\bm{\mathcal{Y}}\in\mathbb{R}^{r_1\times\cdots\times r_d}$ be the output tensor, $\bm{\mathcal{X}}\in\mathbb{R}^{n_1\times\cdots\times n_d}$ be the input tensor, and $\bm{\mathsf{A}}^{(k)}\in\mathbb{R}^{n_k\times r_k}$ be the matrix of the k th mode. Then the Multi-TTM computation can be represented as $\boldsymbol{\mathcal{Y}} = \boldsymbol{\mathcal{X}} \times_1 {{\boldsymbol{\mathsf{A}}^{(1)}}}^{\mathsf{T}} \dots \times_d {{\boldsymbol{\mathsf{A}}^{(d)}}}^{\mathsf{T}}$

$$
\text{or } \mathfrak{X} = \mathfrak{Y} \times_1 \mathsf{A}^{(1)} \cdots \times_d \mathsf{A}^{(d)}.
$$

We will focus only on the first representation in this course. Our results and analysis extend straightforwardly to the latter case. Two approaches to perform this computation:

TTM-in-sequence approach – performed by a sequence of TTM operations

$$
\boldsymbol{\mathcal{Y}} = ((\boldsymbol{\mathcal{X}} \times_1 {{A^{(1)}}}^\mathsf{T}) \times_2 {{A^{(2)}}}^\mathsf{T}) \cdots \times_d {{A^{(d)}}}^\mathsf{T}
$$

All-at-once approach

$$
\mathcal{Y}(r'_{1}, \ldots, r'_{d}) = \sum_{\{n'_{k} \in [n_{k}]\}_{k \in [d]}} \mathcal{X}(n'_{1}, \ldots, n'_{d}) \prod_{j \in [d]} A^{(j)}(n'_{j}, r'_{j})
$$

[d] denotes $\{1, 2, \cdots, d\}$. We represent $n_1 n_2 \cdots n_d$ and $r_1 r_2 \cdots r_d$ by *n* and *r*, respectively. We mainly focus on all-at-once approac[h.](#page-4-0)

Suraj Kumar (Inria & ENS Lyon) [Multi-TTM](#page-0-0) CR12 6 / 25

All-at-once Multi-TTM pseudo code

for
$$
n'_1 = 1:n_1, ...,
$$
 for $n'_d = 1:n_d$,
for $r'_1 = 1:r_1, ...,$ for $r'_d = 1:r_d$,

$$
\mathcal{Y}(r'_1, ..., r'_d) + \mathcal{X}(n'_1, ..., n'_d) \cdot A^{(1)}(n'_1, r'_1) \cdot ... \cdot A^{(N)}(n'_d, r'_d)
$$

Question: Let $\mathcal{Y} \in \mathbb{R}^{r \times r \times r}$, $\mathcal{X} \in \mathbb{R}^{n \times n \times n}$ and $A \in \mathbb{R}^{n \times r}$. What are the different approaches to perform the following Multi-TTM computation?

$$
\mathcal{Y} = \mathcal{X} \times_1 A^{\mathsf{T}} \times_2 A^{\mathsf{T}} \times_3 A^{\mathsf{T}}
$$

Compute the exact number of arithmetic operations for each approach.

つひひ

[Parallel Multi-TTM computation](#page-8-0)

Settings to compute parallel communication lower bound

- Without loss of generality, we assume that $n_1r_1 \leq n_2r_2 \leq \cdots \leq n_dr_d$
- The input tensor is larger than the output tensor, i.e., $n > r$
- The algorithm load balances the computation each processor performs 1/Pth number of loop iterations
- One copy of data is in the system
	- There exists a processor whose input data at the start plus output data at the end must be at most $\frac{n+r+\sum_{i=1}^d n_ir_i}{P}$ words – will analyze amount of data transfers for this processor
- Assume that the innermost computation is atomic all the multiplications are performed on only one processor

4 D F

 \rightarrow **Inches**

 QQQ

Optimization problems (Ballard et. al., 2023)

Lemma

Consider the following optimization problem:

min $x + y + z$ such that x,y,z

nr $\frac{n}{P} \leq xyz$, $0 \leq x \leq n_1 r_1$, $0 \leq y \leq n_2 r_2$, $0 \leq z \leq n_3 r_3$,

where $n_1r_1 \leq n_2r_2 \leq n_3r_3$, and $n_1, n_2, n_3, r_1, r_2, r_3, P > 1$. The optimal solution (x^*, y^*, z^*) depends on the relative values of the constraints, yielding three cases:

\n- \n
$$
\bullet
$$
 if $P < \frac{n_3 r_3}{n_2 r_2}$, then $x^* = n_1 r_1$, $y^* = n_2 r_2$, $z^* = \frac{n_3 r_3}{P}$;\n
\n- \n \bullet if $\frac{n_3 r_3}{n_2 r_2} \leq P < \frac{n_2 n_3 r_2 r_3}{n_1^2 r_1^2}$, then $x^* = n_1 r_1$, $y^* = z^* = \left(\frac{n_2 n_3 r_2 r_3}{P}\right)^{\frac{1}{2}}$;\n
\n- \n \bullet if $\frac{n_2 n_3 r_2 r_3}{n_1^2 r_1^2} \leq P$, then $x^* = y^* = z^* = \left(\frac{n r}{P}\right)^{\frac{1}{3}}$;\n
\n

which can be visualized as follows.

1 and $\frac{n_3 n_3}{2 n_1 n_2 n_3 n_2 n_3}$ $\frac{n_2 n_3 n_2 n_3}{2 n_2 n_3 n_3 n_3 n_3 n_3 n_3 n_1 n_1 n_2 n_3 n_2 n_3 n_3 n_1 n_1 n_2 n_3 n_1 n_3 n_2 n_3 n_3 n_1 n_3 n_1 n_3 n_2 n_3 n_3 n_1 n_3 n_1 n_3 n_2 n$ n₃r₃
n₂r₂ $rac{n_2 n_3 r_2 r_3}{n_1^2 r_1^2}$ $x^* = n_1 r_1$ $y^* = n_2 r_2$ $z^*=\frac{n_3r_3}{P}$ $x^* = n_1 r_1$ $y^* = z^* = \left(\frac{n_2n_3r_2r_3}{P}\right)^{1/2}$ $x^* = y^* = z^* =$ $\left(\frac{nr}{P}\right)^{1/3}$

Lemma

Consider the following optimization problem:

min $u + v$ such that U, V

$$
\frac{nr}{P} \le uv, \quad 0 \le u \le r, \quad 0 \le v \le n,
$$

where $n \geq r$, and $n, r, P \geq 1$. The optimal solution (u^*, v^*) depends on the relative values of the constraints, yielding two cases:

\n- **①** if
$$
P < \frac{n}{r}
$$
, then $u^* = r$, $v^* = \frac{n}{p}$;
\n- **②** if $\frac{n}{r} \leq P$, then $u^* = v^* = \left(\frac{nr}{p}\right)^{\frac{1}{2}}$;
\n

which can be visualized as follows.

$$
u^* = r
$$

\n
$$
v^* = \frac{n}{p}
$$

\n
$$
u^* = v^* = \left(\frac{nr}{p}\right)^{1/2}
$$

Both lemma can be proved using the KKT conditions.

Suraj Kumar (Inria & ENS Lyon) [Multi-TTM](#page-0-0) CR12 12 / 25

4 D.K.

Theorem

Any computationally load balanced atomic Multi-TTM algorithm that starts and ends with one copy of the data distributed across processors involving 3-dimensional tensors with dimensions n_1 , n_2 , n_3 and r_1 , r_2 , r_3 performs at least $A + B - \left(\frac{n}{P} + \frac{r}{P} + \sum_{j=1}^3 \frac{n_j r_j}{P}\right)$ sends or receives where

$$
A = \begin{cases} n_1r_1 + n_2r_2 + \frac{n_3r_3}{P} & \text{if } P < \frac{n_3r_3}{n_2r_2} \\ n_1r_1 + 2\left(\frac{n_2n_3r_2r_3}{P}\right)^{\frac{1}{2}} & \text{if } \frac{n_3r_3}{n_2r_2} \le P < \frac{n_2n_3r_2r_3}{n_1^2r_1^2} \\ 3\left(\frac{nr}{P}\right)^{\frac{1}{3}} & \text{if } \frac{n_2n_3r_2r_3}{n_1^2r_1^2} \le P \end{cases}
$$

$$
B = \begin{cases} r + \frac{n}{P} & \text{if } P < \frac{n}{r} \\ 2\left(\frac{nr}{P}\right)^{\frac{1}{2}} & \text{if } \frac{n}{r} \le P. \end{cases}
$$

つへへ

Communication lower bound proof

Let F be the set of loop indices performed by a processor and $|F| = nr/P$. Define $\phi_{\mathfrak{X}}(F)$, $\phi_{\mathfrak{Y}}(F)$ and $\phi_i(F)$ to be the projections of F onto the indices of the arrays $\mathfrak{X}, \mathcal{Y},$ and $\mathsf{A}^{(j)}$ for $1 \leq j \leq 3.$ Δ matrix can be represented as,

$$
\Delta = \begin{pmatrix} I_{3\times 3} & 1_3 & 0_3 \\ I_{3\times 3} & 0_3 & 1_3 \end{pmatrix}
$$

.

Let $\mathcal{C}=\{\mathsf{s}\in[0,1]^5:\Delta\cdot\mathsf{s}\ge 1\}$. Here Δ is not full rank, we consider all vectors v $=[$ a a a 1-a 1-a] $^{\sf T}\in \mathcal C$ where $0\leq$ a ≤ 1 such that $\Delta\cdot$ v $=$ 1. From <code>HBL</code> inequality, we obtain

$$
\frac{nr}{P} \leq \Big(\prod_{j\in [3]}|\phi_j(F)|\Big)^{a} \big(|\phi_{\mathfrak{X}}(F)||\phi_{\mathfrak{Y}}(F)|\big)^{1-a}.
$$

This is equivalent to $\frac{n r}{P}\leq \prod_{j\in [3]}|\phi_j(F)|$ and $\frac{n r}{P}\leq |\phi_{\mathfrak{X}}(F)||\phi_{\mathcal{Y}}(F)|.$ We also have $|\phi_{\mathfrak{X}}(F)| \leq n$, $|\phi_{\mathfrak{Y}}(F)| \leq r$, and $|\phi_i(F)| \leq n_i r_i$ for $1 \leq j \leq 3$. We want to minimize $|\phi_\mathfrak{X}(\mathcal{F})|+|\phi_\mathfrak{Y}(\mathcal{F})|+\sum_{j\in [3]}|\phi_j(\mathcal{F})|.$ Employing the previous two lemmas and subtracting the owned data of the processor yields the mentioned bound.

Corollary

Any computationally load balanced atomic Multi-TTM algorithm that starts and ends with one copy of the data distributed across processors involving 3-dimensional cubical tensors with dimensions $n^{\frac{1}{3}}\times n^{\frac{1}{3}}\times n^{\frac{1}{3}}$ and $r^{\frac{1}{3}}\times r^{\frac{1}{3}}\times r^{\frac{1}{3}}$ (with $n \ge r$) performs at least

$$
3\left(\frac{nr}{P}\right)^{\frac{1}{3}}+r-\frac{3(nr)^{\frac{1}{3}}+r}{P}
$$

sends or receives when $P < \frac{n}{r}$ and at least

$$
3\left(\frac{nr}{P}\right)^{\frac{1}{3}}+2\left(\frac{nr}{P}\right)^{\frac{1}{2}}-\frac{n+3(nr)^{\frac{1}{3}}+r}{P}
$$

sends or receives when $P \geq \frac{n}{r}$.

We will manily focus on $P < \frac{n}{r}$ case throughout the slides.

つへへ

P processors are organized in a 6-dimensional $p_1 \times p_2 \times p_3 \times q_1 \times q_2 \times q_3$ logical processor grid.

Subtensor \mathfrak{X}_{231} is distributed evenly among processors $(2, 3, 1, *, *, *)$. Similarly, submatrix $\mathsf{A}^{(2)}_{31}$ is distributed evenly among processors $(*,3,*,*,1,*).$

Algorithm 3 Parallel Atomic 3-dimensional Multi-TTM

Require: X , A⁽¹⁾, A⁽²⁾, A⁽³⁾, $p_1\times p_2\times p_3\times q_1\times q_2\times q_3$ logical processor grid **Ensure: y** such that $\mathcal{Y} = \mathcal{X} \times_1 \mathsf{A}^{(1)^{\mathsf{T}}} \times_2 \mathsf{A}^{(2)^{\mathsf{T}}} \times_3 \mathsf{A}^{(3)^{\mathsf{T}}}$ 1: $(p'_1, p'_2, p'_3, q'_1, q'_2, q'_3)$ is my processor id 2: //All-gather input tensor $\mathfrak X$ 3: $\mathfrak{X}_{\rho_1^{\prime}\rho_2^{\prime}\rho_3^{\prime}}=$ All-Gather $(\mathfrak{X},\, (\rho_1^{\prime},\rho_2^{\prime},\rho_3^{\prime},*,*,*))$ 4: //All-gather input matrices 5: $A^{(1)}_{n'}$ $p_{1}^{(1)}q_{1}^{\prime} =$ All-Gather $(\boldsymbol{\mathsf{A}}^{(1)}, \, (p_{1}^{\prime}, *, *, q_{1}^{\prime}, *, *))$ 6: $A^{(2)}_{n'}$ $p_2^{(2)}_{12} =$ All-Gather $(\mathsf{A}^{(2)},\, (*,p'_2,*,*,q'_2,*))$ 7: $A^{(3)}_{n'}$ $\frac{p'_3q'_3}{p'_3q'_3}$ = All-Gather $(\mathsf{A}^{(3)},\,(*,*,p'_3,*,*,q'_3))$ 8: //Local computations in a temporary tensor $\mathfrak T$ 9: $\mathfrak{T} = \textsf{Local-Multi-TTM}(\mathfrak{X}_{\rho_1'\rho_2'\rho_3'},\,\mathsf{A}^{(1)}_{\rho_1'\rho_1'},\,\mathsf{A}^{(2)}_{\rho_2'\sigma_2'},\,\mathsf{A}^{(3)}_{\rho_3'\sigma_3'})$ 10: $//$ Reduce-scatter the output tensor in $\mathcal{Y}_{q'_1 q'_2 q'_3}$ 11: Reduce-Scatter $({\mathcal{Y}}_{q_{1}'q_{2}'q_{3}'},~{\mathcal{T}},~(*,*,*,q_{1}',q_{2}',q_{3}'))$

Steps of the algorithm

Steps of the algorithm for processor $(2, 1, 1, 1, 3, 1)$, where $p_1 = p_2 = p_3 = q_1$ $q_2 = q_3 = 3$. Highlighted areas correspond to the data blocks on which the processor is operating. The dark red highlighting represents the input/output data initially/finally owned by the processor, and the light red highlighting corresponds to received/sent data from/to other processors in All-Gather/Reduce-Scatter collectives to compute y_{131} y_{131} y_{131} . QQ

 \leftarrow \Box

Cost analysis

The bandwidth cost of the algorithm is

$$
\frac{n}{p} + \frac{n_1r_1}{p_1q_1} + \frac{n_2r_2}{p_2q_2} + \frac{n_3r_3}{p_3q_3} + \frac{r}{q} - \left(\frac{n + n_1r_1 + n_2r_2 + n_3r_3 + r}{p}\right).
$$

Here $p = p_1p_2p_3$ and $q = q_1q_2q_3$. The algorithm is communication optimal when we select p_i and q_i based on lower bounds.

Arithmetic operations

The dimensions of $\mathfrak{X}_{p'_1p'_2p'_3}$ and \mathfrak{T} are $\frac{n_1}{p_1}\times \frac{n_2}{p_2}\times \frac{n_3}{p_3}$ and $\frac{r_1}{q_1}\times \frac{r_2}{q_2}\times \frac{r_3}{q_3}$, respectively. The dimension of $\mathsf{A}_{p_k'q_k'}^{(k)}$ is $\frac{n_i}{p_i} \times \frac{r_i}{q_i}$ for $i = 1, 2, 3$. k k

- Local Multi-TTM can be performed as a sequence of TTM operations
- \bullet Assuming TTM operations are performed in their order, first with $A^{(1)}$, then with $A^{(2)}$, and in the end with $A^{(3)}$,

Total arithmetic operations
$$
= 2\left(\frac{n_1n_2n_3r_1}{p_1p_2p_3q_1} + \frac{n_2n_3r_1r_2}{p_2p_3q_1q_2} + \frac{n_3r_1r_2r_3}{p_3q_1q_2q_3}\right).
$$

Multi-TTM cost in TuckerMPI library

- State-of-the-art library for parallel Tucker decomposition
- Implements ST-HOSVD algorithm employs TTM-in-sequence approach to perform Multi-TTM
- Assume TTMs are performed in increasing mode order

It uses a $\tilde{p}_1 \times \tilde{p}_2 \times \tilde{p}_3$ logical processor grid. The bandwidth cost is

$$
\frac{r_1n_2n_3}{\tilde{\rho}_2\tilde{\rho}_3}+\frac{n_1r_1}{\tilde{\rho}_1}+\frac{r_1r_2n_3}{\tilde{\rho}_1\tilde{\rho}_3}+\frac{n_2r_2}{\tilde{\rho}_2}+\frac{r_1r_2r_3}{\tilde{\rho}_1\tilde{\rho}_2}+\frac{n_3r_3}{\tilde{\rho}_3}
$$

$$
-\frac{r_1n_2n_3+r_1r_2n_3+r_1r_2r_3+n_1r_1+n_2r_2+n_3r_3}{P}.
$$

The parallel computational cost is

$$
2\left(\frac{r_1n_1n_2n_3 + r_1r_2n_2n_3 + r_1r_2r_3n_3}{P}\right)
$$

.

Communication cost comparison of all-at-once approach (the presented algorithm) and TTM-in-sequence approach (of TuckerMPI). Comp-Overhead shows the percentage of computational overhead of the all-at-once approach with respect to the TTM-in-sequence approach. Cost of an approach represents the minimum cost among all possible processor configurations.

Comparison of All-at-once and TTM-in-sequence

- Not any clear winner for all settings
- All-at-once approach performs significantly less communication for small P
- \bullet Computational overhead of all-at-once approach is negligible for small P
- **TTM-in-sequence approach is better for large P**

1 [Parallel Multi-TTM computation](#page-8-0) [3-dimensional Multi-TTM](#page-9-0)

d[-dimensional Multi-TTM](#page-22-0)

4 D F

D. \rightarrow QQQ

Theorem

Any computationally load balanced atomic Multi-TTM algorithm that starts and ends with one copy of the data distributed across processors and involves d-dimensional tensors with dimensions n_1, n_2, \ldots, n_d and r_1, r_2, \ldots, r_d performs at least $A + B - \left(\frac{n}{P} + \frac{r}{P} + \sum_{j=1}^d \frac{n_j r_j}{P}\right)$ sends or receives where

$$
A = \begin{cases} \sum_{j=1}^{d-1} n_j r_j + \frac{N_1 R_1}{P} & \text{if } P < \frac{N_1 R_1}{n_{d-1} r_{d-1}}, \\ \sum_{j=1}^{(d-i)} n_j r_j + i \left(\frac{N_i R_i}{P} \right)^{\frac{1}{i}} & \text{if } \frac{N_{i-1} R_{i-1}}{(n_{d+1-i} r_{d+1-i})^{i-1}} \le P < \frac{N_i R_i}{(n_{d+i} r_{d-i})^i}, \\ & \text{for some } 2 \le i \le d-1, \\ d \left(\frac{N_d R_d}{P} \right)^{\frac{1}{d}} & \text{if } \frac{N_{d-1} R_{d-1}}{(n_1 r_1)^{d-1}} \le P. \end{cases}
$$

$$
B = \begin{cases} r + \frac{n}{p} & \text{if } P < \frac{n}{r}, \\ 2 \left(\frac{nr}{P} \right)^{\frac{1}{2}} & \text{if } \frac{n}{r} \le P. \end{cases}
$$

Parallel Multi-TTM algorithm

Algorithm 4 Parallel Atomic d-dimensional Multi-TTM

Required: X, A⁽¹⁾, ..., A^(d),
$$
p_1 \times \cdots \times p_d \times q_1 \times \cdots \times q_d
$$
 logical processor grid
\n**Ensure:** Y such that Y = X ×₁ A⁽¹⁾^T ... ×_d A^(d)^T
\n1: $(p'_1, \dots, p'_d, q'_1, \dots, q'_d)$ is my processor id
\n2: //All-gather input tensor X
\n3: X_{p'_1...p'_d} = All-Gather(X, (p'_1, ..., p'_d, *, ..., *))
\n4: //All-gather all input matrices
\n5: **for** *i* = 1, ··· , *d* **do**
\n6: A⁽ⁱ⁾_{p'_iq'_i} = All-Gather(A⁽ⁱ⁾, (*, ··· , *, p'_i, * ··· , *, q'_i, *))
\n7: **end for**
\n8: //Perform local computations in a temporary tensor T
\n9: T = Local-Multi-TTM(X_{p'_1...p'_d}, A⁽¹⁾_{p'_iq'_i}, ··· , A^(d)_{p'_iq'_d})
\n10: //Reduce-scatter the output tensor in Y_{q'_1...q'_d}
\n11: Reduce-Scatter(Y_{q'_1...q'_d}, T, (*, ··· , *, q'_1, ··· , q'_d))

The algorithm is communication optimal when p_i and q_i are selected based on the lower bound. 298 イロト イ押ト イヨト イヨ

Suraj Kumar (Inria & ENS Lyon) [Multi-TTM](#page-0-0) CR12 24 / 25

- Cost analysis of several ways to perform Multi-TTM
	- Unifying all-at-once and sequence approaches
	- Study of communication-computation trade-off

- Optimal costs for algorithms to compute Tucker decompositions
- Design and implementation of parallel optimal algorithms