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er decomposition of X € R™M*Mmxxnd

It represents a tensor with d matrices (usually orthonormal) and a small core

Tucker decomposition of a 3-dimensional tensor.

X=Yx; AM ... x; A

fx ,17 Ji Z Zy(al’ . »Oéd) 1)(,'1’a1)...A(d)(,'d’ad)
a1=1 ag=1
It can be concisely expressed as X = [Y; A(l), e ,A(d)ﬂ.

Here r; for 1 < j < d denote a set of ranks. Matrices AY) € Rv*4 for 1 <j<d
are usually orthonormal and known as factor matrices. The tensor Y € R *2%xrd
is called the core tensor.
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High Order SVD (HOSVD) for computing a Tucker decomposition

Algorithm 1 HOSVD method to compute a Tucker decomposition

Require: input tensor X € R™*"*" desired rank (ry,- -, rq)
Ensure: X =Y x4 A() X2 AR ... X d Ald)
1: for k=1to d do
AK)  r, leading left singular vectors of X
end for
Y= ADT L AT A@T

BN

@ When r; < rank(X;) for one or more i, the decomposition is called the
truncated-HOSVD (T-HOSVD)

i - @’ @7 @7
@ The collective operation X x1 A Xo A e Xg A is known as
Multiple Tensor-Times-Matrix (Multi-TTM) computation
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Sequentially T-HOSVD (ST-HOSVD) for Tucker decomposition

@ This method is more work efficient than T-HOSVD

@ In each step, it reduces the size of one dimension of the tensor

Algorithm 2 ST-HOSVD method to compute a Tucker decomposition

Require: input tensor X € R™*"*" desired rank (r1,- -, rq)
Ensure: [[‘3;A(1), e ,A(d)]} 2 a(r,- - ,rqg)-rank Tucker decomposition of X
1. W+ X

2: for k=1to d do

3: AR leading singular vectors of Wy

4: W — W x, A(k)T

5: end for

6: Y=W

We can note that ST-HOSVD also performs Multi-TTM computation by doing a
sequence of TTM operations, i.e, Y = ((X x; A(I)T) X2 A(z)T) S Xy AT,
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Bottlenecks for algorithms to compute Tucker decompositions

o Multi-TTM becomes the overwhelming bottleneck computation when

e Matrix SVD costs are reduced using randomization via sketching or

o AK are computed with eigen value decompositions of X(k)X(I) (or
Wik W(Z))
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Multi-TTM computation

Let Y € RM*"*"d be the output tensor, X € R™> X" be the input tensor, and
AK) € RMX" be the matrix of the kth mode. Then the Multi-TTM computation

can be represented as
P ‘d:f)CxlA(l)T---di(d)T

orf)C:‘d X1 A(l) XdA(d).

We will focus only on the first representation in this course. Our results and
analysis extend straightforwardly to the latter case.
Two approaches to perform this computation:

@ TTM-in-sequence approach — performed by a sequence of TTM operations

Y= (X 1 AD Y 5, AOTY sy AT

@ All-at-once approach

Y(ry,...,ry) = Z X(ny,. .., nY) H AU)(nJ’-,rJ-')

{m.€lnd} ke Jj€ld]

[d] denotes {1,2,--- ,d}. We represent nyny---ng and rira---ry by nand r,
respectively. We mainly focus on all-at-once approach.
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All-at-once Multi-TTM pseudo code

for ny = 1:ny, ..., for nl; = 1:ny,

forry =1, ..., for r}, = Liry,
H(r{, e '7r¢l7’) + = x(nill)' ) nii) . A(l)(n/la rl/) e A(N)(n;’v r:li)

A matrix for Multi-TTM

A oA o Al x oy
ny 1 1
n’ 1 1
A— ny 1 1 _ (laxd la 04
- r{ 1 1 - |d><d Od 1d
i1 1 1
ry 1 1

v

Suraj Kumar (Inria & ENS Lyon) Multi-TTM CR12 7/25




Final assignment — deadline Oct 29

Question: LetY e RI>=r X € R™*"™"M and A € R"™". What are the
different approaches to perform the following Multi-TTM computation?

Y= x; A" x, AT x3 AT

Compute the exact number of arithmetic operations for each approach.
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@ Poarallel Multi-TTM computation

Settings to compute parallel communication lower bound

Without loss of generality, we assume that nirn < mpr, < -+ < ngry

The input tensor is larger than the output tensor, i.e., n > r

The algorithm load balances the computation — each processor performs
1/Pth number of loop iterations

One copy of data is in the system

o There exists a processor whose input data at the start plus output data
d o
at the end must be at most w

of data transfers for this processor

words — will analyze amount

Assume that the innermost computation is atomic — all the multiplications
are performed on only one processor
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@ Parallel Multi-TTM computation
@ 3-dimensional Multi-TTM
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Optimization problems (Ballard et. al., 2023)

Lemma

Consider the following optimization problem:

min x + y + z such that

Xy¥yZ

nr
3SXyZ, 0< x <mn, 0< y <mn, 0< z < mn,

where nmirn < mara < n3rs, and ni, 2, n3, 1, r, r3, P > 1. The optimal solution
(x*,y*,z*) depends on the relative values of the constraints, yielding three cases:

Q IFP < B3 then x* = mn, y* = mn, z5 = B3;

nory - P
Qi

1
n3r3 npn3rr3 * __ * ok (n2n3r2r3)§_
e < P < e then x* = mn, y* = z" = (%27%522) 2,

= Non3rnir3 B = o —
Q lfWSP, then x* = y* =z

—

I3

SN—r
W=

which can be visualized as follows.

! ! !
T T T

P
5= mn * * * *
. x* =mn X =y*=2z"=
Yy =mn * ("2"3r2f3)1/2 nr\1/3
Z* __ mn y = - P (F)
=P

y
Suraj Kumar (Inria & ENS Lyon) Multi-TTM CR12 11/25




Optimization problems (Ballard et. al., 2023)

Lemma

Consider the following optimization problem:
min u + v such that

nr
ﬁguv7 0<u<r, 0 v <n,

where n > r, and n,r, P > 1. The optimal solution (u*, v*) depends on the relative
values of the constraints, yielding two cases:

2 n * * __n.

Q fP< I thenu" =r, v: =4,

Q if2 < P, then u* =v* = (%)

(NI

which can be visualized as follows.

!

y P
u =r 1/2
* * nr
vi=2 ut=vt=(%)
v
Both lemma can be proved using the KKT conditions.

Suraj Kumar (Inria & ENS Lyon) Multi-TTM

CR12  12/25



Communication lower bound

Theorem

Any computationally load balanced atomic Multi-TTM algorithm that starts and
ends with one copy of the data distributed across processors involving
3-dimensional tensors with dimensions nyi, np, n3 and ry, rb, r3 performs at least

A+B— (,% + 5+ Z?:1 %'L) sends or receives where

nsr3 , nsr3
nr + narp + 752 1 if P < —
_ nn3nr\ 2 L N3 non3nr:
A= n1r1—|—2(4—1p ) /faunzr2 §P<—*~"i%12
1
nr\s (F Mn3nrs
3(%) if oA < P

=k ifP<?
" \2(m)? fr<p

Suraj Kumar (Inria & ENS Lyon) Multi-TTM CR12 13 /25



Communication lower bound proof

Let F be the set of loop indices performed by a processor and |F| = nr/P. Define
ox(F), ¢y(F) and ¢;(F) to be the projections of F onto the indices of the arrays
X.,Y, and AY for 1 < j < 3. A matrix can be represented as,

l3xz 13 03)
A= .
<|3><3 03 13
Let C = {s € [o, 1]5 A s> 1}. Here A is not full rank, we consider all vectors

v=[aaal-al-a]l €C where0<a<1suchthat A-v=1 From HBL
inequality, we obtain

™ < (TT 1o F)|) (ENGIEG)

J€3]

This is equivalent to 7 < [];c3 [4i(F)| and & < [¢x(F)[|¢y(F)|. We also have
|ox(F)| < n, |¢y(F)| g r, and |¢;(F)| < njr; for 1 < j < 3. We want to minimize
|pxc(F)| + 16y (F)| + 32,3 14:(F)|. Employing the previous two lemmas and
subtracting the owned data of the processor yields the mentioned bound.
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Multi-TTM with cubical tensors

Corollary

Any computationally load balanced atomic Multi-TTM algorithm that starts and
ends with one copy of the data distributed across processors involving
3-dimensional cubical tensors with dimensions n3 x n3 x n3 and r3 x r3 x r3
(with n > r) performs at least

3<%)§+r_3(nr)lj+r

sends or receives when P < % and at least

3(nr>%+2(r’13r>% B n+3(nr)i +r

P P

sends or receives when P > 2.

We will manily focus on P < 7 case throughout the slides.
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Data distribution model

P processors are organized in a 6-dimensional p; X p» X p3 X g1 X g2 X g3 logical

processor grid.

n

=]

Xoz1| .~

X

E—
m

n

2
AR

A

—_—

r

Subtensor X33 is distributed evenly among processors (2, 3,1, *, %, ). Similarly,

submatrix Agzl)

is distributed evenly among processors (x, 3, %, %, 1, x).
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Parallel Multi-TTM algorithm

Algorithm 3 Parallel Atomic 3-dimensional Multi-TTM

Require: X, AQ) AR AG) p1 X p2 X p3 X q1 X o X q3 logical processor grid
Ensure: Y such that' Y =X x; A(l) X2 A(z) X3 A(3)
1: (pi, Py, P5, G, 5, G5) is my processor id

2: //All-gather input tensor X
3: Xpypypy = All-Gather(X, (pi, p3, p3; *, *, %))
4: //All-gather input matrices
5: Al = All-Gather(AW, (pf, *,*, qf, %, *))
6: Affé{é = All-Gather(A®, (x, p}, =, *, gb, %))
7: AD) = All-Gather(A®), (x, %, p}, *, %, d4))
8: //Local computations in a temporary tensor J
. D &) 3
9: T = Local-Multi-TTM(X ;1 1, Aplq Aa Apgqg)
10: //Reduce-scatter the output tensor in Ygq:q/
11: Reduce—Scatter(Hq{qéqé, T, (%, %,%,q1, G5, G5))
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Steps of the algorithm

. V7
P sl P » CT
Y i i i |
= o, =, 2, <, -,
(a) Perform  (b) Perform (c) Perform (d) Perform (e) Perform  (f) Perform
All-Gather All-Gather All-Gather All-Gather local Reduce-Scatter

ON processors on processors on processors on processors Multi-TTM  on processors
(27 17 1’ *7 *, *) (27 *? *, 17 *7 *) (*7 17 *7 *, 37 *) (*7 *, 11 *7 *, 1) to compute (*1 *7 *, 11 37 1)

to obtain tolobtain tozobtain to3obtain partial Y131. to com-
Xo11. Agl). A(13). A11)- pute/distribute
Y131.

Steps of the algorithm for processor (2,1,1,1,3,1), where p; = pp = p3 = g1 =
g2 = g3 = 3. Highlighted areas correspond to the data blocks on which the
processor is operating. The dark red highlighting represents the input/output
data initially/finally owned by the processor, and the light red highlighting
corresponds to received/sent data from/to other processors in
All-Gather/Reduce-Scatter collectives to compute Yi3;.
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Cost analysis

The bandwidth cost of the algorithm is

n nr nor. n3r: r n—+nmmn—+ nr+n3n+r
L 11+22+33+< 1h 21 313 >
P Piqi  P2G2  P3G3 g P

Here p = pipops and ¢ = g192g3. The algorithm is communication optimal when
we select p; and g; based on lower bounds.

Arithmetic operations

The dimensions of X, and T are "1 X "2 X ”3 and [711 X ’2 X ’3, respectively.

(k) n o n
The dimension of AquL is o X o for i = 1,2,3.
@ Local Multi-TTM can be performed as a sequence of TTM operations

@ Assuming TTM operations are performed in their order, first with A®) | then
with A®) | and in the end with A®),

. . . nynan3rn nonzrr n3rmnr;
Total arithmetic operations = 2( + + )

P1P2P3q1 P2p34142 P391492G3
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Multi-TTM cost in TuckerMPI library

@ State-of-the-art library for parallel Tucker decomposition

@ Implements ST-HOSVD algorithm — employs TTM-in-sequence approach to
perform Multi-TTM

@ Assume TTMs are performed in increasing mode order
It uses a p1 X po X ps logical processor grid. The bandwidth cost is
ringny MmNy N2 nnr3 o N3
—— t =t =+t ——+ =+ —=
p2p3 b1 P1pP3 b2 p1p2 p3
_ nmnz+nnnt+nn+mn+nn+nn
2 .

The parallel computational cost is

5 <r1n1n2n3 + riranan3 + rinran;
2 )
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Comparison of All-at-once and TTM-in-sequence

| All-at-Once ——  TTM-in-Sequence Comp-Overhead —-——-
14
a 12 a 70 a 22 1
5 25 5 47 . 3 12
8 — 20 g - /150 8 21 10
£ ? = / ® £ By
H 5 g 3 08 2 ° g
g n 2 B e E g E
g K g 16 0 & s 20 6 &
E 0 @ g s 2 / ]
g § 20 £ 4
L2 S S N 8 ™~ 10 g 19 2
5 5 5
TS 0 LT et 0 = 0
0 3 6 9 0 3 6 9 12 15 0 3 6 9 12 15 18
Number of processors (in power of 2) Number of processors (in power of 2) Number of processors (in power of 2)
3 3 11 5 15 6
(@) nj=2°% rn=2°. (b) nj =2, =2 (c) ni =27, rn=2°

Communication cost comparison of all-at-once approach (the presented
algorithm) and TTM-in-sequence approach (of TuckerMPI). Comp-Overhead
shows the percentage of computational overhead of the all-at-once approach with
respect to the TTM-in-sequence approach. Cost of an approach represents the
minimum cost among all possible processor configurations.
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Comparison of All-at-once and TTM-in-sequence

| All-at-Once ——  TTM-in-Sequence Comp-Overhead —-——- ‘
& 12 T 70 & 2 1"
5 25 5 47 50 S 12
5 5 5
H H ! H
g8 20 8 ~ 50 8 21 /> i 10
£ pd £ i b £ [ b
3 5 8 3 40 g 3 -1
g S8 / L g oo H
= 8 g 16 30 & g 20 6 &
g 1 e 2 ° g e
g . § 20 £ 4
€ | N 8 ™~ 10 g 19 2
2 / H H
10 - 0 15 S 0 S 0
0 3 6 9 0 3 6 9 12 15 [ 3 6 9 12 15 18
Number of processors (in power of 2) Number of processors (in power of 2) Number of processors (in power of 2)
8 3 11 5 15 6
(a) i =2°r=2° (b) nj=2", r=2°. (c) nj=2",r=2°

@ Not any clear winner for all settings
@ All-at-once approach performs significantly less communication for small P
@ Computational overhead of all-at-once approach is negligible for small P

@ TTM-in-sequence approach is better for large P
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Communication lower bound

Theorem

Any computationally load balanced atomic Multi-TTM algorithm that starts and
ends with one copy of the data distributed across processors and involves
d-dimensional tensors with dimensions ny,ny, ..., ng and ry, r>, ..., rqy performs at
least A+ B — (% + &+ 27:1 "’—Pr’) sends or receives where
d-1 NiR . NiR
ZJ':l njrj + =g~ . itP < nd—lll’dl—l ¢
(d—i) s . R\ T : Ni1Ri1 N;R;
A >j—1 njfj + i (%) if Tariarasa)® = P< (ng-irai)’’
for some2 <i<d-1,
1
NgRy\ d -2 Ny Ry.
d (fe%) if Tbyst < P
n n
B:{H_ﬁl ifP <t
nr\ 2 £ n
2 (?) 2 If 2 < P
v
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Parallel Multi-TTM algorithm

Algorithm 4 Parallel Atomic d-dimensional Multi-TTM

Require: X, AD) LAl p1L X X Ppg X qp X -+ X gq logical processor grid
T

Ensure: Y such that Y =X x; A(l) - Xy A

L (pg, -+, Py, gh, - -+ . qy) is my processor id

2: //All-gather input tensor X

3: Xpy..p, = All-Gather(X, (p1, -+, Py *, -+ 1 %))

4: //AII gather all input matrices

5 fori=1,---,d do

6: Af;/_)q; = All-Gather(AD), (s, %, pl, %+ % g %))
7: end for

8: //Perform local computations in a temporary tensor I
. : M .. ald)

9: T = Local-Multi-TTM(X,;... 1, Apiar Aqud)

,_.
i

//Reduce-scatter the output tensor in Y.,
: Reduce—Scatter(‘dq{‘..qQ. T, (6%, 00,0, qY)

[ary
jary

The algorithm is communication optimal when p; and g; are selected based on

the lower bound.
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@ Cost analysis of several ways to perform Multi-TTM

e Unifying all-at-once and sequence approaches
e Study of communication-computation trade-off

@ Optimal costs for algorithms to compute Tucker decompositions

@ Design and implementation of parallel optimal algorithms
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