
Multiple Tensor Times Matrix computation

Suraj Kumar

Inria & ENS Lyon

Email:suraj.kumar@ens-lyon.fr

CR12: October 2024

https://surakuma.github.io/courses/daamtc.html

Suraj Kumar (Inria & ENS Lyon) Multi-TTM CR12 1 / 25

Tucker decomposition of X ∈ Rn1×n2×···×nd

It represents a tensor with d matrices (usually orthonormal) and a small core
tensor.

=

Tucker decomposition of a 3-dimensional tensor.

X = Y×1 A
(1) · · · ×d A(d)

X(i1, · · · , id) =
r1∑

α1=1

· · ·
rd∑

αd=1

Y(α1, · · · , αd)A
(1)(i1, α1) · · ·A(d)(id , αd)

It can be concisely expressed as X = JY; A(1), · · · ,A(d)K.

Here rj for 1 ≤ j ≤ d denote a set of ranks. Matrices A(j) ∈ Rnj×rj for 1 ≤ j ≤ d
are usually orthonormal and known as factor matrices. The tensor Y ∈ Rr1×r2×···×rd

is called the core tensor.

Suraj Kumar (Inria & ENS Lyon) Multi-TTM CR12 2 / 25

High Order SVD (HOSVD) for computing a Tucker decomposition

Algorithm 1 HOSVD method to compute a Tucker decomposition

Require: input tensor X ∈ Rn1×···×nd , desired rank (r1, · · · , rd)
Ensure: X = Y×1 A(1) ×2 A(2) · · · ×d A(d)

1: for k = 1 to d do
2: A(k) ← rk leading left singular vectors of X(k)

3: end for
4: Y = X×1 A(1)T ×2 A(2)T · · · ×d A(d)T

When ri < rank(X(i)) for one or more i , the decomposition is called the
truncated-HOSVD (T-HOSVD)

The collective operation X×1 A(1)T
×2 A(2)T

· · · ×d A(d)T
is known as

Multiple Tensor-Times-Matrix (Multi-TTM) computation

Suraj Kumar (Inria & ENS Lyon) Multi-TTM CR12 3 / 25

Sequentially T-HOSVD (ST-HOSVD) for Tucker decomposition

This method is more work efficient than T-HOSVD

In each step, it reduces the size of one dimension of the tensor

Algorithm 2 ST-HOSVD method to compute a Tucker decomposition

Require: input tensor X ∈ Rn1×···×nd , desired rank (r1, · · · , rd)

Ensure: JY; A(1), · · · ,A(d)K : a (r1, · · · , rd)-rank Tucker decomposition of X
1: W← X

2: for k = 1 to d do
3: A(k) ← rk leading singular vectors of W(k)

4: W←W×k A(k)T

5: end for
6: Y = W

We can note that ST-HOSVD also performs Multi-TTM computation by doing a

sequence of TTM operations, i.e, Y = ((X×1 A(1)T
)×2 A(2)T

) · · · ×d A(d)T
.

Suraj Kumar (Inria & ENS Lyon) Multi-TTM CR12 4 / 25

Bottlenecks for algorithms to compute Tucker decompositions

Multi-TTM becomes the overwhelming bottleneck computation when

Matrix SVD costs are reduced using randomization via sketching or

A(k) are computed with eigen value decompositions of X(k)X
T
(k) (or

W(k)W
T
(k))

Suraj Kumar (Inria & ENS Lyon) Multi-TTM CR12 5 / 25

Multi-TTM computation

Let Y ∈ Rr1×···×rd be the output tensor, X ∈ Rn1×···×nd be the input tensor, and
A(k) ∈ Rnk×rk be the matrix of the kth mode. Then the Multi-TTM computation
can be represented as

Y = X×1 A(1)T
· · · ×d A(d)T

or X = Y×1 A(1) · · · ×d A(d).

We will focus only on the first representation in this course. Our results and
analysis extend straightforwardly to the latter case.
Two approaches to perform this computation:

TTM-in-sequence approach – performed by a sequence of TTM operations

Y = ((X×1 A(1)T
)×2 A(2)T

) · · · ×d A(d)T

All-at-once approach

Y(r ′1, . . . , r
′
d) =

∑
{n′k∈[nk]}k∈[d]

X(n′1, . . . , n
′
d)
∏
j∈[d]

A(j)(n′j , r
′
j)

[d] denotes {1, 2, · · · , d}. We represent n1n2 · · · nd and r1r2 · · · rd by n and r ,
respectively. We mainly focus on all-at-once approach.

Suraj Kumar (Inria & ENS Lyon) Multi-TTM CR12 6 / 25

All-at-once Multi-TTM pseudo code

for n′1 = 1:n1, . . . , for n′d = 1:nd ,

for r ′1 = 1:r1, . . . , for r ′d = 1:rd ,

Y(r ′1, . . . , r
′
d) + = X(n′1, . . . , n

′
d) · A(1)(n′1, r

′
1) · · · · · A(N)(n′d , r

′
d)

∆ matrix for Multi-TTM

∆ =

A(1) · · · A(i) · · · A(d) X Y



n′1 1 1
...

. . .
...

n′i 1 1
...

. . .
...

n′d 1 1
r ′1 1 1
...

. . .
...

r ′i 1 1
...

. . .
...

r ′d 1 1

=

(
Id×d 1d 0d
Id×d 0d 1d

)

Suraj Kumar (Inria & ENS Lyon) Multi-TTM CR12 7 / 25

Final assignment – deadline Oct 29

Question: Let Y ∈ Rr×r×r , X ∈ Rn×n×n and A ∈ Rn×r . What are the
different approaches to perform the following Multi-TTM computation?

Y = X×1 A
T ×2 A

T ×3 A
T

Compute the exact number of arithmetic operations for each approach.

Suraj Kumar (Inria & ENS Lyon) Multi-TTM CR12 8 / 25

Table of Contents

1 Parallel Multi-TTM computation

Settings to compute parallel communication lower bound

Without loss of generality, we assume that n1r1 ≤ n2r2 ≤ · · · ≤ nd rd

The input tensor is larger than the output tensor, i.e., n ≥ r

The algorithm load balances the computation – each processor performs
1/Pth number of loop iterations

One copy of data is in the system

There exists a processor whose input data at the start plus output data

at the end must be at most
n+r+

∑d
i=1 ni ri

P words – will analyze amount
of data transfers for this processor

Assume that the innermost computation is atomic – all the multiplications
are performed on only one processor

Suraj Kumar (Inria & ENS Lyon) Multi-TTM CR12 9 / 25

Table of Contents

1 Parallel Multi-TTM computation
3-dimensional Multi-TTM
d-dimensional Multi-TTM

Suraj Kumar (Inria & ENS Lyon) Multi-TTM CR12 10 / 25

Optimization problems (Ballard et. al., 2023)

Lemma
Consider the following optimization problem:

min
x,y,z

x + y + z such that

nr

P
≤ xyz , 0 ≤ x ≤ n1r1, 0 ≤ y ≤ n2r2, 0 ≤ z ≤ n3r3,

where n1r1 ≤ n2r2 ≤ n3r3, and n1, n2, n3, r1, r2, r3,P ≥ 1. The optimal solution
(x∗, y∗, z∗) depends on the relative values of the constraints, yielding three cases:

1 if P < n3r3
n2r2

, then x∗ = n1r1, y
∗ = n2r2, z

∗ = n3r3
P

;

2 if n3r3
n2r2
≤ P < n2n3r2r3

n2
1r

2
1

, then x∗ = n1r1, y
∗ = z∗ =

(
n2n3r2r3

P

) 1
2 ;

3 if n2n3r2r3
n2

1r
2
1
≤ P, then x∗ = y∗ = z∗ =

(
nr
P

) 1
3 ;

which can be visualized as follows.

P1 n3r3
n2r2

n2n3r2r3
n2

1r
2
1x∗ = n1r1

y∗ = n2r2

z∗ = n3r3
P

x∗ = n1r1

y∗ = z∗ =
(
n2n3r2r3

P

)1/2
x∗ = y∗ = z∗ =(

nr
P

)1/3

Suraj Kumar (Inria & ENS Lyon) Multi-TTM CR12 11 / 25

Optimization problems (Ballard et. al., 2023)

Lemma
Consider the following optimization problem:

min
u,v

u + v such that

nr

P
≤ uv , 0 ≤ u ≤ r , 0 ≤ v ≤ n,

where n ≥ r , and n, r ,P ≥ 1. The optimal solution (u∗, v∗) depends on the relative
values of the constraints, yielding two cases:

1 if P < n
r
, then u∗ = r , v∗ = n

P
;

2 if n
r
≤ P, then u∗ = v∗ =

(
nr
P

) 1
2 ;

which can be visualized as follows.

P1 n
r

u∗ = r
v∗ = n

P
u∗ = v∗ =

(
nr
P

)1/2

Both lemma can be proved using the KKT conditions.

Suraj Kumar (Inria & ENS Lyon) Multi-TTM CR12 12 / 25

Communication lower bound

Theorem
Any computationally load balanced atomic Multi-TTM algorithm that starts and
ends with one copy of the data distributed across processors involving
3-dimensional tensors with dimensions n1, n2, n3 and r1, r2, r3 performs at least

A + B −
(

n
P + r

P +
∑3

j=1
nj rj
P

)
sends or receives where

A =


n1r1 + n2r2 + n3r3

P if P < n3r3

n2r2

n1r1 + 2
(
n2n3r2r3

P

) 1
2 if n3r3

n2r2
≤ P < n2n3r2r3

n2
1r

2
1

3
(
nr
P

) 1
3 if n2n3r2r3

n2
1r

2
1
≤ P

B =

{
r + n

P if P < n
r

2
(
nr
P

) 1
2 if n

r ≤ P.

Suraj Kumar (Inria & ENS Lyon) Multi-TTM CR12 13 / 25

Communication lower bound proof

Let F be the set of loop indices performed by a processor and |F | = nr/P. Define
φX(F), φY(F) and φj(F) to be the projections of F onto the indices of the arrays

X,Y, and A(j) for 1 ≤ j ≤ 3. ∆ matrix can be represented as,

∆ =

(
I3×3 13 03

I3×3 03 13

)
.

Let C =
{

s ∈ [0, 1]5 : ∆ · s ≥ 1
}

. Here ∆ is not full rank, we consider all vectors

v = [a a a 1-a 1-a]T ∈ C where 0 ≤ a ≤ 1 such that ∆ · v = 1. From HBL
inequality, we obtain

nr

P
≤
(∏

j∈[3]

|φj(F)|
)a(
|φX(F)||φY(F)|

)1-a
.

This is equivalent to nr
P
≤
∏

j∈[3] |φj(F)| and nr
P
≤ |φX(F)||φY(F)|. We also have

|φX(F)| ≤ n, |φY(F)| ≤ r , and |φj(F)| ≤ nj rj for 1 ≤ j ≤ 3. We want to minimize
|φX(F)|+ |φY(F)|+

∑
j∈[3] |φj(F)|. Employing the previous two lemmas and

subtracting the owned data of the processor yields the mentioned bound.

Suraj Kumar (Inria & ENS Lyon) Multi-TTM CR12 14 / 25

Multi-TTM with cubical tensors

Corollary

Any computationally load balanced atomic Multi-TTM algorithm that starts and
ends with one copy of the data distributed across processors involving
3-dimensional cubical tensors with dimensions n

1
3 × n

1
3 × n

1
3 and r

1
3 × r

1
3 × r

1
3

(with n ≥ r) performs at least

3
(nr
P

) 1
3

+ r − 3(nr)
1
3 + r

P

sends or receives when P < n
r and at least

3
(nr
P

) 1
3

+ 2
(nr
P

) 1
2 − n + 3(nr)

1
3 + r

P

sends or receives when P ≥ n
r .

We will manily focus on P < n
r case throughout the slides.

Suraj Kumar (Inria & ENS Lyon) Multi-TTM CR12 15 / 25

Data distribution model

P processors are organized in a 6-dimensional p1 × p2 × p3 × q1 × q2 × q3 logical
processor grid.

X

X231

n1

n2

n 3

A(2)

A
(2)
31

r2

n2

Subtensor X231 is distributed evenly among processors (2, 3, 1, ∗, ∗, ∗). Similarly,

submatrix A
(2)
31 is distributed evenly among processors (∗, 3, ∗, ∗, 1, ∗).

Suraj Kumar (Inria & ENS Lyon) Multi-TTM CR12 16 / 25

Parallel Multi-TTM algorithm

Algorithm 3 Parallel Atomic 3-dimensional Multi-TTM

Require: X, A(1), A(2), A(3), p1 × p2 × p3 × q1 × q2 × q3 logical processor grid

Ensure: Y such that Y = X×1 A(1)T
×2 A(2)T

×3 A(3)T

1: (p′1, p
′
2, p
′
3, q
′
1, q
′
2, q
′
3) is my processor id

2: //All-gather input tensor X
3: Xp′

1p
′
2p

′
3

= All-Gather(X, (p′1, p
′
2, p
′
3, ∗, ∗, ∗))

4: //All-gather input matrices

5: A
(1)
p′

1q
′
1

= All-Gather(A(1), (p′1, ∗, ∗, q′1, ∗, ∗))

6: A
(2)
p′

2q
′
2

= All-Gather(A(2), (∗, p′2, ∗, ∗, q′2, ∗))

7: A
(3)
p′

3q
′
3

= All-Gather(A(3), (∗, ∗, p′3, ∗, ∗, q′3))

8: //Local computations in a temporary tensor T

9: T = Local-Multi-TTM(Xp′
1p

′
2p

′
3
, A

(1)
p′

1q
′
1
, A

(2)
p′

2q
′
2
, A

(3)
p′

3q
′
3
)

10: //Reduce-scatter the output tensor in Yq′
1q

′
2q

′
3

11: Reduce-Scatter(Yq′
1q

′
2q

′
3
, T, (∗, ∗, ∗, q′1, q′2, q′3))

Suraj Kumar (Inria & ENS Lyon) Multi-TTM CR12 17 / 25

Steps of the algorithm

X

n1

n2

n 3

(a) Perform
All-Gather
on processors
(2, 1, 1, ∗, ∗, ∗)
to obtain
X211.

A(1)

n1

r1

(b) Perform
All-Gather
on processors
(2, ∗, ∗, 1, ∗, ∗)
to obtain
A

(1)
21 .

A(2)

n2

r2

(c) Perform
All-Gather
on processors
(∗, 1, ∗, ∗, 3, ∗)
to obtain
A

(2)
13 .

A(3)

n3

r3

(d) Perform
All-Gather
on processors
(∗, ∗, 1, ∗, ∗, 1)
to obtain
A

(3)
11 .

Y

r1

r2

r 3

(e) Perform
local
Multi-TTM
to compute
partial Y131.

Y

r1

r2

r 3

(f) Perform
Reduce-Scatter
on processors
(∗, ∗, ∗, 1, 3, 1)
to com-
pute/distribute
Y131.

Steps of the algorithm for processor (2, 1, 1, 1, 3, 1), where p1 = p2 = p3 = q1 =
q2 = q3 = 3. Highlighted areas correspond to the data blocks on which the
processor is operating. The dark red highlighting represents the input/output
data initially/finally owned by the processor, and the light red highlighting
corresponds to received/sent data from/to other processors in
All-Gather/Reduce-Scatter collectives to compute Y131.

Suraj Kumar (Inria & ENS Lyon) Multi-TTM CR12 18 / 25

Cost analysis

The bandwidth cost of the algorithm is

n

p
+

n1r1
p1q1

+
n2r2
p2q2

+
n3r3
p3q3

+
r

q
−
(
n + n1r1 + n2r2 + n3r3 + r

P

)
.

Here p = p1p2p3 and q = q1q2q3. The algorithm is communication optimal when
we select pi and qi based on lower bounds.

Arithmetic operations

The dimensions of Xp′
1p

′
2p

′
3

and T are n1

p1
× n2

p2
× n3

p3
and r1

q1
× r2

q2
× r3

q3
, respectively.

The dimension of A
(k)
p′
kq

′
k

is ni
pi
× ri

qi
for i = 1, 2, 3.

Local Multi-TTM can be performed as a sequence of TTM operations

Assuming TTM operations are performed in their order, first with A(1), then
with A(2), and in the end with A(3),

Total arithmetic operations = 2
(n1n2n3r1
p1p2p3q1

+
n2n3r1r2
p2p3q1q2

+
n3r1r2r3
p3q1q2q3

)
.

Suraj Kumar (Inria & ENS Lyon) Multi-TTM CR12 19 / 25

Multi-TTM cost in TuckerMPI library

State-of-the-art library for parallel Tucker decomposition

Implements ST-HOSVD algorithm – employs TTM-in-sequence approach to
perform Multi-TTM

Assume TTMs are performed in increasing mode order

It uses a p̃1 × p̃2 × p̃3 logical processor grid. The bandwidth cost is

r1n2n3

p̃2p̃3
+

n1r1
p̃1

+
r1r2n3

p̃1p̃3
+

n2r2
p̃2

+
r1r2r3
p̃1p̃2

+
n3r3
p̃3

− r1n2n3 + r1r2n3 + r1r2r3 + n1r1 + n2r2 + n3r3
P

.

The parallel computational cost is

2

(
r1n1n2n3 + r1r2n2n3 + r1r2r3n3

P

)
.

Suraj Kumar (Inria & ENS Lyon) Multi-TTM CR12 20 / 25

Comparison of All-at-once and TTM-in-sequence

 10

 11

 12

 0 3 6 9
 0

 5

 10

 15

 20

 25

W
o

rd
s
 c

o
m

m
u

n
ic

a
te

d
 (

in
 p

o
w

e
r

o
f

2
)

P
e

rc
e

n
ta

g
e

Number of processors (in power of 2)

(a) ni = 28, ri = 23.

 15

 16

 17

 0 3 6 9 12 15
 0

 10

 20

 30

 40

 50

 60

 70

W
o

rd
s
 c

o
m

m
u

n
ic

a
te

d
 (

in
 p

o
w

e
r

o
f

2
)

P
e

rc
e

n
ta

g
e

Number of processors (in power of 2)

(b) ni = 211, ri = 25.

 19

 20

 21

 22

 0 3 6 9 12 15 18
 0

 2

 4

 6

 8

 10

 12

 14

W
o

rd
s
 c

o
m

m
u

n
ic

a
te

d
 (

in
 p

o
w

e
r

o
f

2
)

P
e

rc
e

n
ta

g
e

Number of processors (in power of 2)

(c) ni = 215, ri = 26.

Communication cost comparison of all-at-once approach (the presented
algorithm) and TTM-in-sequence approach (of TuckerMPI). Comp-Overhead
shows the percentage of computational overhead of the all-at-once approach with
respect to the TTM-in-sequence approach. Cost of an approach represents the
minimum cost among all possible processor configurations.

Suraj Kumar (Inria & ENS Lyon) Multi-TTM CR12 21 / 25

Comparison of All-at-once and TTM-in-sequence

 10

 11

 12

 0 3 6 9
 0

 5

 10

 15

 20

 25

W
o

rd
s
 c

o
m

m
u

n
ic

a
te

d
 (

in
 p

o
w

e
r

o
f

2
)

P
e

rc
e

n
ta

g
e

Number of processors (in power of 2)

(a) ni = 28, ri = 23.

 15

 16

 17

 0 3 6 9 12 15
 0

 10

 20

 30

 40

 50

 60

 70

W
o

rd
s
 c

o
m

m
u

n
ic

a
te

d
 (

in
 p

o
w

e
r

o
f

2
)

P
e

rc
e

n
ta

g
e

Number of processors (in power of 2)

(b) ni = 211, ri = 25.

 19

 20

 21

 22

 0 3 6 9 12 15 18
 0

 2

 4

 6

 8

 10

 12

 14

W
o

rd
s
 c

o
m

m
u

n
ic

a
te

d
 (

in
 p

o
w

e
r

o
f

2
)

P
e

rc
e

n
ta

g
e

Number of processors (in power of 2)

(c) ni = 215, ri = 26.

Not any clear winner for all settings

All-at-once approach performs significantly less communication for small P

Computational overhead of all-at-once approach is negligible for small P

TTM-in-sequence approach is better for large P

Suraj Kumar (Inria & ENS Lyon) Multi-TTM CR12 21 / 25

Table of Contents

1 Parallel Multi-TTM computation
3-dimensional Multi-TTM
d-dimensional Multi-TTM

Suraj Kumar (Inria & ENS Lyon) Multi-TTM CR12 22 / 25

Communication lower bound

Theorem
Any computationally load balanced atomic Multi-TTM algorithm that starts and
ends with one copy of the data distributed across processors and involves
d-dimensional tensors with dimensions n1, n2, . . . , nd and r1, r2, . . . , rd performs at

least A + B −
(

n
P + r

P +
∑d

j=1
nj rj
P

)
sends or receives where

A =



∑d-1
j=1 nj rj + N1R1

P if P < N1R1

nd-1rd-1
,∑(d-i)

j=1 nj rj + i
(
NiRi

P

) 1
i if Ni -1Ri -1

(nd+1-i rd+1-i)i -1
≤ P < NiRi

(nd-i rd-i)i
,

for some 2 ≤ i ≤ d − 1,

d
(
NdRd

P

) 1
d if Nd-1Rd-1

(n1r1)d-1
≤ P.

B =

{
r + n

P if P < n
r ,

2
(
nr
P

) 1
2 if n

r ≤ P.

Suraj Kumar (Inria & ENS Lyon) Multi-TTM CR12 23 / 25

Parallel Multi-TTM algorithm

Algorithm 4 Parallel Atomic d-dimensional Multi-TTM

Require: X, A(1), · · · , A(d), p1 × · · · × pd × q1 × · · · × qd logical processor grid

Ensure: Y such that Y = X×1 A(1)T
· · · ×d A(d)T

1: (p′1, · · · , p′d , q′1, · · · , q′d) is my processor id
2: //All-gather input tensor X
3: Xp′

1···p′
d

= All-Gather(X, (p′1, · · · , p′d , ∗, · · · , ∗))
4: //All-gather all input matrices
5: for i = 1, · · · , d do

6: A
(i)
p′
i q

′
i

= All-Gather(A(i), (∗, · · · , ∗, p′i , ∗ · · · , ∗, q′i , ∗))

7: end for
8: //Perform local computations in a temporary tensor T

9: T = Local-Multi-TTM(Xp′
1···p′

d
, A

(1)
p′

1q
′
1
,· · · , A

(d)
p′
dq

′
d
)

10: //Reduce-scatter the output tensor in Yq′
1···q′

d

11: Reduce-Scatter(Yq′
1···q′

d
, T, (∗, · · · , ∗, q′1, · · · , q′d))

The algorithm is communication optimal when pi and qi are selected based on
the lower bound.

Suraj Kumar (Inria & ENS Lyon) Multi-TTM CR12 24 / 25

Perspectives

Cost analysis of several ways to perform Multi-TTM

Unifying all-at-once and sequence approaches
Study of communication-computation trade-off

Optimal costs for algorithms to compute Tucker decompositions

Design and implementation of parallel optimal algorithms

Suraj Kumar (Inria & ENS Lyon) Multi-TTM CR12 25 / 25

	Parallel Multi-TTM computation
	3-dimensional Multi-TTM
	d-dimensional Multi-TTM

