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Popular parallel distributions of matrices
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Note: Process 0 owns the shaded submatrices.
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Extension of sequential lower bounds

Sequential lower bound on bandwidth = Ω
(
2mn`√

M

)
= Ω

(
#operations√

M

)
Sequential lower bound on latency = Ω

(
#operations

M3/2

)
Extension to paralllel machines

Lemma

Consider a traditional n × n matrix multiplication performed on P
processors with distributed memory. A processor with memory M that

performs W elementary products must send or receive Ω
(

W√
M

)
elements.

Theorem

Consider a traditional n × n matrix multiplication on P processors, each

with a memory M. Some processor has Ω
(
n3/P√

M

)
volume of I/O.

Lower bound on latency = Ω
(
n3/P

M3/2

)
Bound is useful only when M is not very large
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Matrix multiplication with 2D layout

Consider processors are arranged in a 2-dimensional grid

Processors exchange data along rows and columns
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P processors are arranged in
√
P ×
√
P grid
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Cannon’s 2D matrix multiplication algorithm

Processors organized on a square 2D grid of size
√
P ×
√
P

A, B, C matrices distributed by blocks of size N/
√
P × N/

√
P

Processor P(i , j) initially holds blocks A(i , j),B(i , j) and computes
C (i , j)

First realign matrices:

Shift A(i , j) block to the left by i
Shift B(i , j) block to the top by j

After realignment: P(i , j) holds blocks A(i , i + j) and B(i + j , j)

At each step :

Compute one block product
Shift A blocks left
Shift B blocks up
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Cannon’s matrix multiplication algorithm
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A, B after realignment
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A, B after 1st shift
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A, B after 2nd shift
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A, B after 3rd shift

C(3,2) = A(3,1) * B(1,2) + A(3,2) * B(2,2) + A(3,3) * B(3,2) + A(3,0) * B(0,2)

Total data transfer costs = O(n2/
√
P)

Not clear how to extend it for rectangular matrices
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Scalable Universal Matrix Multiplication Algorithm (SUMMA)

b

A

b

B

C23

Atmp

Btmp

C

P is arranged in
√
P ×
√
P grid

Each processor owns n/
√
P × n/

√
P submatrices of A, B and C

b=block size (≤ n/
√
P)

Algorithm structure

Each owner of A block broadcasts data to whole processor row

Each owner of B block broadcasts data to whole processor column

Receive block of A in Atmp, receive block of B in Btmp

Compute Clocal+ = Clocal+ Atmp * Btmp
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Communication costs of SUMMA algorithm

Total number of steps =
√
P · n/

√
P

b = n
b

Total data transfer costs = O(n2/
√
P)

Easily extendable with rectangular matrices

Theorem

Consider a traditional matrix multiplication on P processors each with
O(n2/P) storage, some processor has Ω(n2/

√
P) I/O volume.

Proof: Previous result: Ω(n3/P
√
M) with M = n2/P.

O(n2/
√
P) I/O volume of both Cannon’s algorithm and SUMMA

Both algorithms are bandwidth optimal

Can we do better?
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Notations & Settings

C = AB, where A ∈ Rn1×n2 ,B ∈ Rn2×n3 , and C ∈ Rn1×n3

Let d1 = min(n1, n2, n3) ≤ d2 = median(n1, n2, n3) ≤ d3 =
max(n1, n2, n3)

Settings

P number of processors

The algorithm load balances the computation

One copy of data is in the system

There exists a processor whose input data at the start plus output data
at the end must be at most d1d2+d1d3+d2d3

P words – will analyze data
transfers for this processor

Each processor has large local memory – enough to store all the
required data

Focus on bandwidth cost (volume of data transfers)
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Constraints for matrix multiplications

Loomis-Whitney inequalitiy: for d − 1 dimensional projections
For the 2d object G , Area(G ) ≤ φxφy
For the 3d object H, Volume(H) ≤

√
φxyφyzφxz

x

y

G

φx

φy

z

x

y

φxz

φyz φxy

H

for i = 0:n1 − 1, for k = 0:n2 − 1, for j = 0:n3 − 1

C [i ][j ]+ = A[i ][k] ∗ B[k][j ]

Total number of multiplications = n1n2n3
Each processor performs n1n2n3

P amount of multiplications
Optimization problem:

Minimize φA + φB + φC s.t.

φ
1
2
Aφ

1
2
Bφ

1
2
C ≥

n1n2n3
P
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Extra constraints

for i = 0:n1 − 1, for k = 0:n2 − 1, for j = 0:n3 − 1

C [i ][j ]+ = A[i ][k] ∗ B[k][j ]

Each element of A (resp. B) is involved in n3 (resp. n1)
multiplications

To perform at least n1n2n3
P multiplications: φA ≥ n1n2

P , φB ≥ n2n3
P

Each element of C is the sum of n2 multiplications, therefore
φC ≥ n1n3

P

Projections can be at max the size of the arrays: φA ≤ n1n2,
φB ≤ n2n3, φC ≤ n1n3
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Optimization problem for communication lower bounds

• Projections (φA, φB , φC ) indicate the amount of array accesses
• Communication lower bound = φA + φB + φC − data owned by the processor

Minimize φA + φB + φC s.t.

φ
1
2

Aφ
1
2

Bφ
1
2

C ≥
n1n2n3

P
n1n2
P
≤φA ≤ n1n2

n2n3
P
≤φB ≤ n2n3

n1n3
P
≤φC ≤ n1n3

Generalized version (in terms of
d1, d2, d3)

Minimize φ1 + φ2 + φ3 s.t.

φ
1
2
1 φ

1
2
2 φ

1
2
3 ≥

d1d2d3
P

d1d2
P
≤φ1 ≤ d1d2

d1d3
P
≤φ2 ≤ d1d3

d2d3
P
≤φ3 ≤ d2d3

d1 ≤d2 ≤ d3
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Amount of accesses and communication lower bounds

• Estimate the solution based on Lagrange multipliers
• Prove optimality using all Karush–Kuhn–Tucker (KKT) conditions are
satisfied

Amount of accesses =φ1 + φ2 + φ3

P1 d3
d2

d2d3
d2
1φ1 = d1d2

φ2 = d1d3
P

φ3 = d2d3
P

φ1 = φ2 = (
d2
1d2d3
P )1/2

φ3 = d2d3
P

φ1 = φ2 = φ3 = (d1d2d3P )2/3

Communication lower bounds (amount of data transfers)

P1 d3
d2

d2d3
d2
1LB=d1d2 − d1d2

P LB=2(
d2
1d2d3
P )1/2

−d1d2+d1d3
P

LB=3(d1d2d3P )2/3

−d1d2+d1d3+d2d3
P
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Convex and quasiconvex functions

Definition (Eq. 3.2, Boyd and Vandenberghe, 2004.)

A differentiable function f : Rd → R is convex if its domain is a convex set and
for all x , y ∈ dom f ,

f (y) ≥ f (x) + 〈∇f (x), y − x〉.

Definition (Eq. 3.20, Boyd and Vandenberghe, 2004.)

A differentiable function g : Rd → R is quasiconvex if its domain is a convex set
and for all x , y ∈ dom g ,

g(y) ≤ g(x) implies that 〈∇g(x), y − x〉 ≤ 0.

Lemma (Lemma 2, Ballard et al., SPAA 2022.)

The function g0(x) = L− x1x2x3, for some constant L, is quasiconvex in the
positive octant.
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KKT conditions

Definition (Eq. 5.49, Boyd and Vandenberghe, 2004.)

Consider an optimization problem of the form

min
x

f (x) subject to g(x) ≤ 0 (1)

where f : Rd → R and g : Rd → Rc are both differentiable. Define the dual
variables µ ∈ Rc , and let Jg be the Jacobian of g . The Karush-Kuhn-Tucker
(KKT) conditions of (x ,µ) are as follows:

Primal feasibility: g(x) ≤ 0;

Dual feasibility: µ ≥ 0;

Stationarity: ∇f (x) + µ · Jg (x) = 0;

Complementary slackness: µigi (x) = 0 for all i ∈ {1, . . . , c}.

Lemma (Lemma 3, Ballard et al., SPAA 2022.)

Consider an optimization problem of the form given in Equation 1. If f is a
convex function and each gi is a quasiconvex function, then the KKT conditions
are sufficient for optimality.
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Design of communication optimal algorithms for C = AB

Arrangements of 8 processors

P is organized into p1 × p2 × p3 logical
grid

Select p1, p2 and p3 based on the
communication lower bounds

Allgather A on the set of processors along
each slice of p3

Allgather B on the set of processors along
each slice of p1

Perform local computation

Perform Reduce-Scatter along p2 to
obtain C

p2

p1

p3

C
C00

C01

C02

C10

C12

C20

C21

C22A

A00 A01 A02

A10 A12

A20 A21 A22

B
B 00

B 01

B 02

B 10

B 12

B 20

B 21

B 22
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Communication optimal algorithms

Data Distribution (P is organized into a p1 × p2 × p3 grid)

Each processor has 1
P th amount of input and output

variables

A20 = A(2 n1
p1

: 3 n1
p1
− 1, 0 : n2

p2
− 1) is evenly distributed

among (2, 0, ∗) processors

B01 = B(0 : n2
p2
− 1, n3p3 : 2 n3

p3
)− 1 is evenly distributed

among (∗, 0, 1) processors

A

A20

n2

n1

Assignment 2 – deadline Sept. 26

Questions:

Write pseudo code for 3-dimensional parallel matrix multiplication
algorithm.

Determine expressions for processor grid dimensions based on the
lower bounds when P is large and compute the data transfer costs of
the algorithm with these dimensions.
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Cost analysis and Open questions

Cost analysis along the critical path

Total amount of multiplications per processor = n1n2n3
p1p2p3

= n1n2n3
P

Total data transfers = n1n2
p1p2

+ n2n3
p2p3

+ n1n3
p1p3
− n1n2+n2n3+n1n3

P

Total memory required on each processor = O
(

(n1n2n3P )
2
3

)

Open Questions

Are communication lower bounds achievable for all matrix
dimensions?

How to adapt when we have less memory on each processor?
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Limited memory scenarios

C = AB, where A ∈ Rn1×n2 ,B ∈ Rn2×n3 , and C ∈ Rn1×n3

Amount of memory on each processor = O
(
c n1n3

P

)
n1n3
P << c n1n3

P << (n1n2n3P )
2
3

Data transfer lower bound = Ω
(
n1n2n3
P
√
M

)
= Ω

(
n2
√

n1n3
Pc

)
Algorithm structure

The same 3-dimensional algorithm

P ia arranged in p1 × p2 × p3 logical grid

Set p2 = c

p1p3 = P/c processors perform
multiplication of n1 × n2

c submatrix of A
with n2

c × n3 submatrix of B

Perform Reduce-Scatter operation along p2
to obtain C

p2

p1

p3

C
C00

C01

C02

C10

C12

C20

C21

C22A

A00 A01 A02

A10 A12

A20 A21 A22

B
B 00

B 01

B 02

B 10

B 12

B 20

B 21

B 22
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Processor grid dimensions and data transfer costs

Total amount of multiplications on each processor = n1
p1
· n2c ·

n3
p3

= n1n2n3
P

To minimize data transfer costs

# access of A on each processor = # access of B on each processor
=> n1

p1
· n2c = n2

c ·
n1
p1

p1p3 = P/c

p1 =
(

n1
n3
· Pc
) 1

2

p3 =
(

n3
n1
· Pc
) 1

2

# accessed elements on each processor = n1n2
p1c

+ n2n3
p3c

+ c n1n3
P

= 2n2
√

n1n3
Pc + c n1n3

P

Data transfer costs on each processor = # accessed elements - owned data

owned data = n1n2+n2n3+n1n3
P

c n1n3
P << ( n1n2n3

P )
2
3 => c n1n3

P << n2
√

n1n3
Pc

Data transfer costs of the algorithm match the leading terms in the lower
bounds
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