
Communication costs of parallel matrix multiplications

Suraj Kumar

Inria & ENS Lyon

Email:suraj.kumar@ens-lyon.fr

CR12: September 2024

https://surakuma.github.io/courses/daamtc.html

Suraj Kumar (Inria & ENS Lyon) Matrix multiplication CR12 1 / 24

Popular parallel distributions of matrices

1 2 30

1D column block layout

01230123012301230 0 0 0 0

1D column cyclic layout

0 1 2 3 0 1 2 30 0

1D column block cyclic layout

Row versions of the

previous layouts

0

2

1

3

2D row and column block layout

0

0

2

2

1

1

3

3

0

0

2

2

1

1

3

3

2D row and column block cyclic layout

Note: Process 0 owns the shaded submatrices.

Suraj Kumar (Inria & ENS Lyon) Matrix multiplication CR12 2 / 24

Table of Contents

1 2D-algorithms

2 Memory-independent communication lower bounds

3 Parallel algorithms

4 2.5D matrix multiplication

Suraj Kumar (Inria & ENS Lyon) Matrix multiplication CR12 3 / 24

Extension of sequential lower bounds

Sequential lower bound on bandwidth = Ω
(
2mn`√

M

)
= Ω

(
#operations√

M

)
Sequential lower bound on latency = Ω

(
#operations

M3/2

)
Extension to paralllel machines

Lemma

Consider a traditional n × n matrix multiplication performed on P
processors with distributed memory. A processor with memory M that

performs W elementary products must send or receive Ω
(

W√
M

)
elements.

Theorem

Consider a traditional n × n matrix multiplication on P processors, each

with a memory M. Some processor has Ω
(
n3/P√

M

)
volume of I/O.

Lower bound on latency = Ω
(
n3/P

M3/2

)
Bound is useful only when M is not very large

Suraj Kumar (Inria & ENS Lyon) Matrix multiplication CR12 4 / 24

Matrix multiplication with 2D layout

Consider processors are arranged in a 2-dimensional grid

Processors exchange data along rows and columns

p(0,0)

p(1,0)

p(2,0)

p(3,0)

p(0,1)

p(1,1)

p(2,1)

p(3,1)

p(0,2)

p(1,2)

p(2,2)

p(3,2)

p(0,3)

p(1,3)

p(2,3)

p(3,3)

=

p(0,0)

p(1,0)

p(2,0)

p(3,0)

p(0,1)

p(1,1)

p(2,1)

p(3,1)

p(0,2)

p(1,2)

p(2,2)

p(3,2)

p(0,3)

p(1,3)

p(2,3)

p(3,3)

∗

p(0,0)

p(1,0)

p(2,0)

p(3,0)

p(0,1)

p(1,1)

p(2,1)

p(3,1)

p(0,2)

p(1,2)

p(2,2)

p(3,2)

p(0,3)

p(1,3)

p(2,3)

p(3,3)

P processors are arranged in
√
P ×
√
P grid

Suraj Kumar (Inria & ENS Lyon) Matrix multiplication CR12 5 / 24

Cannon’s 2D matrix multiplication algorithm

Processors organized on a square 2D grid of size
√
P ×
√
P

A, B, C matrices distributed by blocks of size N/
√
P × N/

√
P

Processor P(i , j) initially holds blocks A(i , j),B(i , j) and computes
C (i , j)

First realign matrices:

Shift A(i , j) block to the left by i
Shift B(i , j) block to the top by j

After realignment: P(i , j) holds blocks A(i , i + j) and B(i + j , j)

At each step :

Compute one block product
Shift A blocks left
Shift B blocks up

Suraj Kumar (Inria & ENS Lyon) Matrix multiplication CR12 6 / 24

Cannon’s matrix multiplication algorithm

A(0,0) A(0,1) A(0,2) A(0,3)

A(1,0) A(1,1) A(1,2) A(1,3)

A(2,0) A(2,1) A(2,2) A(2,3)

A(3,0) A(3,1) A(3,2) A(3,3)

B(0,0)

B(1,0)

B(2,0)

B(3,0)

B(0,1)

B(1,1)

B(2,1)

B(3,1)

B(0,3)

B(1,3)

B(2,3)

B(3,3)

B(0,2)

B(1,2)

B(2,2)

B(3,2)

Initial A, B

A(0,0) A(0,1) A(0,2) A(0,3)

A(1,1) A(1,2) A(1,3) A(1,0)

A(2,2) A(2,3) A(2,0) A(2,1)

A(3,3) A(3,0) A(3,1) A(3,2)

B(0,0)

B(1,0)

B(2,0)

B(3,0)

B(1,1)

B(2,1)

B(3,1)

B(0,1)

B(3,3)

B(0,3)

B(1,3)

B(2,3)

B(2,2)

B(3,2)

B(0,2)

B(1,2)

A, B after realignment

A(0,1) A(0,2) A(0,3) A(0,0)

A(1,2) A(1,3) A(1,0) A(1,1)

A(2,3) A(2,0) A(2,1) A(2,2)

A(3,0) A(3,1) A(3,2) A(3,3)

B(1,0)

B(2,0)

B(3,0)

B(0,0)

B(2,1)

B(3,1)

B(0,1)

B(1,1)

B(0,3)

B(1,3)

B(2,3)

B(3,3)

B(3,2)

B(0,2)

B(1,2)

B(2,2)

A, B after 1st shift

A(0,2) A(0,3) A(0,0) A(0,1)

A(1,3) A(1,0) A(1,1) A(1,2)

A(2,0) A(2,1) A(2,2) A(2,3)

A(3,1) A(3,2) A(3,3) A(3,0)

B(2,0)

B(3,0)

B(0,0)

B(1,0)

B(3,1)

B(0,1)

B(1,1)

B(2,1)

B(1,3)

B(2,3)

B(3,3)

B(0,3)

B(0,2)

B(1,2)

B(2,2)

B(3,2)

A, B after 2nd shift

A(0,3) A(0,0) A(0,1) A(0,2)

A(1,0) A(1,1) A(1,2) A(1,3)

A(2,1) A(2,2) A(2,3) A(2,0)

A(3,2) A(3,3) A(3,0) A(3,1)

B(3,0)

B(0,0)

B(1,0)

B(2,0)

B(0,1)

B(1,1)

B(2,1)

B(3,1)

B(2,3)

B(3,3)

B(0,3)

B(1,3)

B(1,2)

B(2,2)

B(3,2)

B(0,2)

A, B after 3rd shift

C(3,2) = A(3,1) * B(1,2) + A(3,2) * B(2,2) + A(3,3) * B(3,2) + A(3,0) * B(0,2)

Total data transfer costs = O(n2/
√
P)

Not clear how to extend it for rectangular matrices

Suraj Kumar (Inria & ENS Lyon) Matrix multiplication CR12 7 / 24

Scalable Universal Matrix Multiplication Algorithm (SUMMA)

b

A

b

B

C23

Atmp

Btmp

C

P is arranged in
√
P ×
√
P grid

Each processor owns n/
√
P × n/

√
P submatrices of A, B and C

b=block size (≤ n/
√
P)

Algorithm structure

Each owner of A block broadcasts data to whole processor row

Each owner of B block broadcasts data to whole processor column

Receive block of A in Atmp, receive block of B in Btmp

Compute Clocal+ = Clocal+ Atmp * Btmp

Suraj Kumar (Inria & ENS Lyon) Matrix multiplication CR12 8 / 24

Communication costs of SUMMA algorithm

Total number of steps =
√
P · n/

√
P

b = n
b

Total data transfer costs = O(n2/
√
P)

Easily extendable with rectangular matrices

Theorem

Consider a traditional matrix multiplication on P processors each with
O(n2/P) storage, some processor has Ω(n2/

√
P) I/O volume.

Proof: Previous result: Ω(n3/P
√
M) with M = n2/P.

O(n2/
√
P) I/O volume of both Cannon’s algorithm and SUMMA

Both algorithms are bandwidth optimal

Can we do better?

Suraj Kumar (Inria & ENS Lyon) Matrix multiplication CR12 9 / 24

Table of Contents

1 2D-algorithms

2 Memory-independent communication lower bounds

3 Parallel algorithms

4 2.5D matrix multiplication

Suraj Kumar (Inria & ENS Lyon) Matrix multiplication CR12 10 / 24

Notations & Settings

C = AB, where A ∈ Rn1×n2 ,B ∈ Rn2×n3 , and C ∈ Rn1×n3

Let d1 = min(n1, n2, n3) ≤ d2 = median(n1, n2, n3) ≤ d3 =
max(n1, n2, n3)

Settings

P number of processors

The algorithm load balances the computation

One copy of data is in the system

There exists a processor whose input data at the start plus output data
at the end must be at most d1d2+d1d3+d2d3

P words – will analyze data
transfers for this processor

Each processor has large local memory – enough to store all the
required data

Focus on bandwidth cost (volume of data transfers)

Suraj Kumar (Inria & ENS Lyon) Matrix multiplication CR12 11 / 24

Constraints for matrix multiplications

Loomis-Whitney inequalitiy: for d − 1 dimensional projections
For the 2d object G , Area(G) ≤ φxφy
For the 3d object H, Volume(H) ≤

√
φxyφyzφxz

x

y

G

φx

φy

z

x

y

φxz

φyz φxy

H

for i = 0:n1 − 1, for k = 0:n2 − 1, for j = 0:n3 − 1

C [i][j]+ = A[i][k] ∗ B[k][j]

Total number of multiplications = n1n2n3
Each processor performs n1n2n3

P amount of multiplications
Optimization problem:

Minimize φA + φB + φC s.t.

φ
1
2
Aφ

1
2
Bφ

1
2
C ≥

n1n2n3
P

Suraj Kumar (Inria & ENS Lyon) Matrix multiplication CR12 12 / 24

Extra constraints

for i = 0:n1 − 1, for k = 0:n2 − 1, for j = 0:n3 − 1

C [i][j]+ = A[i][k] ∗ B[k][j]

Each element of A (resp. B) is involved in n3 (resp. n1)
multiplications

To perform at least n1n2n3
P multiplications: φA ≥ n1n2

P , φB ≥ n2n3
P

Each element of C is the sum of n2 multiplications, therefore
φC ≥ n1n3

P

Projections can be at max the size of the arrays: φA ≤ n1n2,
φB ≤ n2n3, φC ≤ n1n3

Suraj Kumar (Inria & ENS Lyon) Matrix multiplication CR12 13 / 24

Optimization problem for communication lower bounds

• Projections (φA, φB , φC) indicate the amount of array accesses
• Communication lower bound = φA + φB + φC − data owned by the processor

Minimize φA + φB + φC s.t.

φ
1
2

Aφ
1
2

Bφ
1
2

C ≥
n1n2n3

P
n1n2
P
≤φA ≤ n1n2

n2n3
P
≤φB ≤ n2n3

n1n3
P
≤φC ≤ n1n3

Generalized version (in terms of
d1, d2, d3)

Minimize φ1 + φ2 + φ3 s.t.

φ
1
2
1 φ

1
2
2 φ

1
2
3 ≥

d1d2d3
P

d1d2
P
≤φ1 ≤ d1d2

d1d3
P
≤φ2 ≤ d1d3

d2d3
P
≤φ3 ≤ d2d3

d1 ≤d2 ≤ d3

Suraj Kumar (Inria & ENS Lyon) Matrix multiplication CR12 14 / 24

Amount of accesses and communication lower bounds

• Estimate the solution based on Lagrange multipliers
• Prove optimality using all Karush–Kuhn–Tucker (KKT) conditions are
satisfied

Amount of accesses =φ1 + φ2 + φ3

P1 d3
d2

d2d3
d2
1φ1 = d1d2

φ2 = d1d3
P

φ3 = d2d3
P

φ1 = φ2 = (
d2
1d2d3
P)1/2

φ3 = d2d3
P

φ1 = φ2 = φ3 = (d1d2d3P)2/3

Communication lower bounds (amount of data transfers)

P1 d3
d2

d2d3
d2
1LB=d1d2 − d1d2

P LB=2(
d2
1d2d3
P)1/2

−d1d2+d1d3
P

LB=3(d1d2d3P)2/3

−d1d2+d1d3+d2d3
P

Suraj Kumar (Inria & ENS Lyon) Matrix multiplication CR12 15 / 24

Convex and quasiconvex functions

Definition (Eq. 3.2, Boyd and Vandenberghe, 2004.)

A differentiable function f : Rd → R is convex if its domain is a convex set and
for all x , y ∈ dom f ,

f (y) ≥ f (x) + 〈∇f (x), y − x〉.

Definition (Eq. 3.20, Boyd and Vandenberghe, 2004.)

A differentiable function g : Rd → R is quasiconvex if its domain is a convex set
and for all x , y ∈ dom g ,

g(y) ≤ g(x) implies that 〈∇g(x), y − x〉 ≤ 0.

Lemma (Lemma 2, Ballard et al., SPAA 2022.)

The function g0(x) = L− x1x2x3, for some constant L, is quasiconvex in the
positive octant.

Suraj Kumar (Inria & ENS Lyon) Matrix multiplication CR12 16 / 24

KKT conditions

Definition (Eq. 5.49, Boyd and Vandenberghe, 2004.)

Consider an optimization problem of the form

min
x

f (x) subject to g(x) ≤ 0 (1)

where f : Rd → R and g : Rd → Rc are both differentiable. Define the dual
variables µ ∈ Rc , and let Jg be the Jacobian of g . The Karush-Kuhn-Tucker
(KKT) conditions of (x ,µ) are as follows:

Primal feasibility: g(x) ≤ 0;

Dual feasibility: µ ≥ 0;

Stationarity: ∇f (x) + µ · Jg (x) = 0;

Complementary slackness: µigi (x) = 0 for all i ∈ {1, . . . , c}.

Lemma (Lemma 3, Ballard et al., SPAA 2022.)

Consider an optimization problem of the form given in Equation 1. If f is a
convex function and each gi is a quasiconvex function, then the KKT conditions
are sufficient for optimality.
Suraj Kumar (Inria & ENS Lyon) Matrix multiplication CR12 17 / 24

Table of Contents

1 2D-algorithms

2 Memory-independent communication lower bounds

3 Parallel algorithms

4 2.5D matrix multiplication

Suraj Kumar (Inria & ENS Lyon) Matrix multiplication CR12 18 / 24

Design of communication optimal algorithms for C = AB

Arrangements of 8 processors

P is organized into p1 × p2 × p3 logical
grid

Select p1, p2 and p3 based on the
communication lower bounds

Allgather A on the set of processors along
each slice of p3

Allgather B on the set of processors along
each slice of p1

Perform local computation

Perform Reduce-Scatter along p2 to
obtain C

p2

p1

p3

C
C00

C01

C02

C10

C12

C20

C21

C22A

A00 A01 A02

A10 A12

A20 A21 A22

B
B 00

B 01

B 02

B 10

B 12

B 20

B 21

B 22

Suraj Kumar (Inria & ENS Lyon) Matrix multiplication CR12 19 / 24

Communication optimal algorithms

Data Distribution (P is organized into a p1 × p2 × p3 grid)

Each processor has 1
P th amount of input and output

variables

A20 = A(2 n1
p1

: 3 n1
p1
− 1, 0 : n2

p2
− 1) is evenly distributed

among (2, 0, ∗) processors

B01 = B(0 : n2
p2
− 1, n3p3 : 2 n3

p3
)− 1 is evenly distributed

among (∗, 0, 1) processors

A

A20

n2

n1

Assignment 2 – deadline Sept. 26

Questions:

Write pseudo code for 3-dimensional parallel matrix multiplication
algorithm.

Determine expressions for processor grid dimensions based on the
lower bounds when P is large and compute the data transfer costs of
the algorithm with these dimensions.

Suraj Kumar (Inria & ENS Lyon) Matrix multiplication CR12 20 / 24

Cost analysis and Open questions

Cost analysis along the critical path

Total amount of multiplications per processor = n1n2n3
p1p2p3

= n1n2n3
P

Total data transfers = n1n2
p1p2

+ n2n3
p2p3

+ n1n3
p1p3
− n1n2+n2n3+n1n3

P

Total memory required on each processor = O
(

(n1n2n3P)
2
3

)

Open Questions

Are communication lower bounds achievable for all matrix
dimensions?

How to adapt when we have less memory on each processor?

Suraj Kumar (Inria & ENS Lyon) Matrix multiplication CR12 21 / 24

Table of Contents

1 2D-algorithms

2 Memory-independent communication lower bounds

3 Parallel algorithms

4 2.5D matrix multiplication

Suraj Kumar (Inria & ENS Lyon) Matrix multiplication CR12 22 / 24

Limited memory scenarios

C = AB, where A ∈ Rn1×n2 ,B ∈ Rn2×n3 , and C ∈ Rn1×n3

Amount of memory on each processor = O
(
c n1n3

P

)
n1n3
P << c n1n3

P << (n1n2n3P)
2
3

Data transfer lower bound = Ω
(
n1n2n3
P
√
M

)
= Ω

(
n2
√

n1n3
Pc

)
Algorithm structure

The same 3-dimensional algorithm

P ia arranged in p1 × p2 × p3 logical grid

Set p2 = c

p1p3 = P/c processors perform
multiplication of n1 × n2

c submatrix of A
with n2

c × n3 submatrix of B

Perform Reduce-Scatter operation along p2
to obtain C

p2

p1

p3

C
C00

C01

C02

C10

C12

C20

C21

C22A

A00 A01 A02

A10 A12

A20 A21 A22

B
B 00

B 01

B 02

B 10

B 12

B 20

B 21

B 22

Suraj Kumar (Inria & ENS Lyon) Matrix multiplication CR12 23 / 24

Processor grid dimensions and data transfer costs

Total amount of multiplications on each processor = n1
p1
· n2c ·

n3
p3

= n1n2n3
P

To minimize data transfer costs

access of A on each processor = # access of B on each processor
=> n1

p1
· n2c = n2

c ·
n1
p1

p1p3 = P/c

p1 =
(

n1
n3
· Pc
) 1

2

p3 =
(

n3
n1
· Pc
) 1

2

accessed elements on each processor = n1n2
p1c

+ n2n3
p3c

+ c n1n3
P

= 2n2
√

n1n3
Pc + c n1n3

P

Data transfer costs on each processor = # accessed elements - owned data

owned data = n1n2+n2n3+n1n3
P

c n1n3
P << (n1n2n3

P)
2
3 => c n1n3

P << n2
√

n1n3
Pc

Data transfer costs of the algorithm match the leading terms in the lower
bounds

Suraj Kumar (Inria & ENS Lyon) Matrix multiplication CR12 24 / 24

	2D-algorithms
	Memory-independent communication lower bounds
	Parallel algorithms
	2.5D matrix multiplication

