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Popular parallel distributions of matrices

0[1]2]3 0/112130[1{2130[1213(0f1 0]1]2(3|0]1]2|3 Row versions of the

previous layouts

1D column block layout 1D column cyclic layout 1D column block cyclic layout
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2D row and column block layout 2D row and column block cyclic layout

Note: Process 0 owns the shaded submatrices.
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Extension of sequential lower bounds

@ Sequential lower bound on bandwidth = Q (2’"—\/%5) =Q (M)

@ Sequential lower bound on latency = (W

VM

Extension to paralllel machines

Lemma

Consider a traditional n X n matrix multiplication performed on P
processors with distributed memory. A processor with memory M that

performs W elementary products must send or receive ) (\/ﬂﬂ) elements.

Theorem

Consider a traditional n X n matrix multiplication on P processors, each
5]

with a memory M. Some processor has 2 (':/5) volume of 1/0.

3
@ Lower bound on latency = Q ("M3//,Z)

@ Bound is useful only when M is not very large

4
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Matrix multiplication with 2D layout

o Consider processors are arranged in a 2-dimensional grid

@ Processors exchange data along rows and columns

p(0.0) [p(0.1)| p(0.2) | p(0.3) p(0.0) [p(0.1)| p(0.2) | p(0.3) p(0.0) [p(0.1) | p(0.2) | p(0.3)
p(L0) [p(1.1)|p(1.2) | p(1.3) p(L.0) [p(1.1)|p(1.2) | p(1.3) p(1.0) | p(1.1) [p(12) | p(L3)
p(2.0) [p(2.1) [p(22) [p(2:3) - p(2.0) [p(2.1) [p(22) [p(2:3) ' p(2.0) [p(21) [p(22) [P(2:3)
p(3.0)[p(3.1) [p(3:2) | p(3.3) p(3.0)[p(3.1) [p(32) | P(3.3) p(3.0)[P(3.1) [p(3.2) | P(3.3)

@ P processors are arranged in v/P x /P grid
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Cannon's 2D matrix multiplication algorithm

@ Processors organized on a square 2D grid of size v/P x VP
@ A, B, C matrices distributed by blocks of size N/\/ﬁ X N/\/ﬁ

@ Processor P(i, ) initially holds blocks A(i,j), B(i,j) and computes
C(i.Jj)
First realign matrices:

o Shift A(i,j) block to the left by i
e Shift B(i,j) block to the top by j

After realignment: P(/,j) holds blocks A(i,7 +j) and B(i + j,J)

@ At each step :
o Compute one block product
e Shift A blocks left
e Shift B blocks up
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Cannon’s matrix multiplication algorithm

— — — —
A(0,0)| A(0.1)[A(0.2)|A(0.3) A0,0)[A(0.1) [A(0.2) [A0.3) A(0.1)|A(0.2) [A(0.3) [A(0.0) A02)|A(0.3)[A(0.0) [A(0.1) A0.3)|A0,0)[A(0.1) [A(0.2)
A(L0)[A(L1)|A(L2) [A(L3) A(1L1)[A(1.2) [A(L3) [A(LO) A(12)|A(1.3) [A(L0) [A(L1) A(13)|A(L0)[A(L1) [A(L2) A(LO)|A(L1)[A(12) [A(L3)
A20)|A(21)|A@22) [A2.3) A@22)[A(23)[A20) [A@21) A@23)|A(20)[A(21) [A(22) AQ20)|A(21)[A(22)[A(23) A2.1)|A(22)[A(23)[A(20)
AB0)[AG1)[AB2)[ABG3) AB3)[AB0) (A1) [AB2) AB0)|AG1)|AB2)|AGS3 1)[AG2)|AG3)|AGO) A(3.2)[A(33)|AG.0)

B(0,0)[B(0,1)|B(0,2) [B(0.3) B(0.0)|B(L1) [B(2.2)|B(3.3) B(10) [B(2.1) [B(3.2)|B(0.3) B(2.0) [B(3.1) [B(0.2)|B(13) B(3.0) [B(0.1)[(1.2)|B(2.3)
B(1,0)[B(1,1)|E(1.2) [B(L3) B(L0)|B(2.1) [B(3.2)|B(0.3) B(2.0) [B(3.1) [B(0.2)|B(1.3) B(3.0) [B(0.1) [5(1.2)|B(2.3) B(0.0) [B(1.1) [B(2.2)|B(3.3)
B(20)[B(21)|B(2.2) [B(2.3) B(2,0)|B(3.1) [B(0.2)|B(1.3) B(3.0) [B(0.1)[E(1.2)|B(2.3) 8(0.0) [B(L1) [B(2.2)|B(3.3) B(10) [B(2.1) [B(3.2)|B(0.3)
B(3.0)[B(3.1)|E(2.2) [B(3.3) B(3.0)|B(0.1) [(1.2)|B(2.3) 8(0.0) [B(L1) [B(2.2)|B(3.3) B8(10) [B(2.1) [2(3.2)|B(0.3) B(2.0) [B(3.1) [B(0.2)|B(L3)

Initial A, B A, B after realignment A, B after 1st shift A, B after 2nd shift A, B after 3rd shift

C(3:2) = A(3.1) * B(1.2) + A(3.2) * B(2,2) + A(3.3) * B(3.2) + A(3,0) * B(0,2)

o Total data transfer costs = O(n?/v/P)

@ Not clear how to extend it for rectangular matrices
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Scalable Universal Matrix Multiplication Algorithm (SUMMA)

b i Bimp
T [ \&
J

b Atmp

A B C

e P is arranged in /P x /P grid
o Each processor owns n/+/P x n/+/P submatrices of A, B and C
@ b=block size (< n/v/P)

Algorithm structure

@ Each owner of A block broadcasts data to whole processor row
@ Each owner of B block broadcasts data to whole processor column
@ Receive block of A in Ay, receive block of B in Biyp

° ComPUte Clocal‘l' = Clocal+ Atmp * Btmp
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Communication costs of SUMMA algorithm

o Total number of steps = v/P - # =1
o Total data transfer costs = O(n?/v/P)

o Easily extendable with rectangular matrices

Consider a traditional matrix multiplication on P processors each with
O(n?/P) storage, some processor has Q(n?/+/P) 1/0 volume.

Proof: Previous result: Q(n3/P+/M) with M = n?/P.
o O(n?/+/P) 1/0 volume of both Cannon’s algorithm and SUMMA

@ Both algorithms are bandwidth optimal
e Can we do better?
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© Memory-independent communication lower bounds
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Notations & Settings

o C=AB, where Ac R"*™ B ¢ R™*™M and C € RM*™

e Let di = min(ny, n2, n3) < d» = median(ny, np,n3) < d3 =
max(ny, na, n3)

@ P number of processors
@ The algorithm load balances the computation

@ One copy of data is in the system
o There exists a processor whose input data at the start plus output data
at the end must be at most Mgﬁm words — will analyze data
transfers for this processor
@ Each processor has large local memory — enough to store all the
required data

@ Focus on bandwidth cost (volume of data transfers)

v
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Constraints for matrix multiplications

@ Loomis-Whitney inequalitiy: for d — 1 dimensional projections
o For the 2d object G, Area(G) < ¢,0,
o For the 3d object H, Volume(H) < \/¢xyyrPxz

Y. Y.

¢y%?

X X

fori=0:n1 —1, for k=0:n—1, for j=0:n3 — 1
CliU1+ = Alil[k] = BIK][/]
@ Total number of multiplications = nynon3

@ Each processor performs 2% amount of multiplications
@ Optimization problem:

Minimize ¢a + ¢ + ¢c s.t.
i 1.1 nimns
sh0p0¢ =
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Extra constraints

fori=0:n; — 1, for k=0:np — 1, for j =0:n3 — 1
ClL1+ = Alil[k] = BIK]]

e Each element of A (resp. B) is involved in n3 (resp. ni)
multiplications

nynan M H H . nyn non
o To perform at least ™2™ multiplications: ¢4 > %52, ¢ > 752

@ Each element of C is the sum of n, multiplications, therefore
¢c > H5R

@ Projections can be at max the size of the arrays: ¢4 < nino,
¢p < man3, gc < min3
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Optimization problem for communication lower bounds

e Projections (¢a, 5, dc) indicate the amount of array accesses
e Communication lower bound = ¢4 + ¢ + ¢¢c — data owned by the processor

Generalized version (in terms of

dy, da, d3)
Minimize ¢a + ¢ + dc s.t. Minimize ¢1 + ¢ + ¢3 s.t.
11 1 ninon 11 1 didod
Or0R0E > T 010303 2 =5
nmn;
P <¢pa < nmno _dlljZ <¢1 < didp
npn3
= <¢pg < dd
P <6 < mans =2 <y < dids
ms by
p =TT %S%Sdzck
d1 <dr < ds
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Amount of accesses and communication lower bounds

e Estimate the solution based on Lagrange multipliers
e Prove optimality using all Karush—-Kuhn—Tucker (KKT) conditions are
satisfied

Amount of accesses =¢1 + @2 + @3

P

NG == (IR s g = (MR
2="p" by = B
¢z = L& P

Communication lower bounds (amount of data transfers)

LB:d1d2 _ lel,-"z LB_2(d12d2d3)1/2 LB:3( dl(lfglﬁ )2/3
- P
_ didbt+dids _ d1d2+d1Fl)I/3+d2d3
P

Suraj Kumar (Inria & ENS Lyon) Matrix multiplication CR12 15 /24



Convex and quasiconvex functions

Definition (Eq. 3.2, Boyd and Vandenberghe, 2004.

A differentiable function f : R? — R is convex if its domain is a convex set and
for all x,y € dom f,

fly) = f(x) + (VF(x),y — x).

Definition (Eq. 3.20, Boyd and Vandenberghe, 2004.)

A differentiable function g : RY — R is quasiconvex if its domain is a convex set
and for all x,y € dom g,

g(y) < g(x) implies that (Vg(x),y — x) <0.

Lemma (Lemma 2, Ballard et al., SPAA 2022.)

The function go(x) = L — x1x0x3, for some constant L, is quasiconvex in the
positive octant.

v
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KKT conditions

Definition (Eq. 5.49, Boyd and Vandenberghe, 2004.)

Consider an optimization problem of the form
min f(x) subjectto g(x) <0 (1)
X
where f : R? — R and g : R? — R€ are both differentiable. Define the dual

variables p € R€, and let J; be the Jacobian of g. The Karush-Kuhn-Tucker
(KKT) conditions of (x, u) are as follows:

® Primal feasibility: g(x) < 0;

@ Dual feasibility: p > 0;

@ Stationarity: Vf(x)+ p - Jg(x) =0;

® Complementary slackness: p;gi(x) =0 forall i € {1,...,c}.

Lemma (Lemma 3, Ballard et al., SPAA 2022.)

Consider an optimization problem of the form given in Equation 1. If f is a
convex function and each g; is a quasiconvex function, then the KKT conditions
are sufficient for optimality.
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Design of communication optimal algorithms for C = AB

Arrangements of 8 processors

e ) 0P

@ P is organized into p; X p2 X p3 logical

grid

@ Select p1, p» and p3 based on the

communication lower bounds

@ Allgather A on the set of pro
each slice of p3

cessors along

@ Allgather B on the set of processors along

each slice of p;

@ Perform local computation

@ Perform Reduce-Scatter along p> to

obtain C
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Communication optimal algorithms

Data Distribution (P is organized into a p; X pa X p3 grid)

@ Each processor has %th amount of input and output
variables "

® Ay =A(23 : 321 —1,0: 22 — 1) is evenly distributed W
among (2,0, %) processors

® By =B(0: 2 —1,2:22)—1is evenly distributed —
among (x,0,1) processors

Assignment 2 — deadline Sept. 26

Questions:

@ Write pseudo code for 3-dimensional parallel matrix multiplication
algorithm.

@ Determine expressions for processor grid dimensions based on the
lower bounds when P is large and compute the data transfer costs of
the algorithm with these dimensions.

v
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Cost analysis and Open questions

Cost analysis along the critical path

ninan3 __ ninang
P1P2pP3

__ ninp non niny _ ninp+npn3+mn
() = 1= mn3 LB AEINPERELINE
Total data transfers o —’*p2p3 T 5

@ Total amount of multiplications per processor =

wInN

o Total memory required on each processor = O <(%F%”°L)

Open Questions

@ Are communication lower bounds achievable for all matrix
dimensions?

@ How to adapt when we have less memory on each processor?
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Limited memory scenarios

o C = AB, where Aec Rm*™ B ¢ R™*m and C € RM*™
_ mm
@ Amount of memory on each processor = O (c32)
2
o P << oM << (MER)3

e Data transfer lower bound = Q (’g"jﬁ) =Q (n/"55)

Algorithm structure

@ The same 3-dimensional algorithm

@ P ia arranged in p; X po X p3 logical grid

@ Set pp =c¢

@ p1p3 = P/c processors perform
multiplication of ny x 2 submatrix of A
with 72 x n3 submatrix of B

@ Perform Reduce-Scatter operation along p> —
to obtain C

v
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Processor grid dimensions and data transfer costs

@ Total amount of multiplications on each processor = 7t - 2 . 72 = mMEm

@ To minimize data transfer costs

e # access of A on each processor = # access of B on each processor

—~ Mm . m _m m
_>p1 c c m
o pip3 = PJc

1
° p1= ("1 '%)2

1
_ P\?
°P3—<Z*f'z)

@ # accessed elements on each processor = ’;11"62 + ’;)23”53 + cMR

— 2!’7 n1n3 + Cn1n3
@ Data transfer costs on each processor = # accessed elements - owned data

@ owned data = Mmetmistmny
= P
2
ning ninmn3\s _ mn3 nin3
cHgRE << (MER)S => MR << myy /T

@ Data transfer costs of the algorithm match the leading terms in the lower
bounds
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