Symmetric computations

Suraj Kumar

Inria & ENS Lyon
Email:suraj.kumar@ens-lyon.fr

CR12: September 2024

https://surakuma.github.io/courses/daamtc.html

Symmetric Rank-K (SYRK) update

 $C = A \cdot A^T$, where A is an $n_1 \times n_2$ matrix and C is an $n_1 \times n_1$ symmetric matrix.

- It multiplies a matrix with its transpose
- It requires roughly half of the computation of general matrix multiplication due to symmetry
- $C_{ij} = \sum_{k=0}^{n_2-1} A_{ik} A_{jk}$ for $0 \le j \le i \le n_1$

SYRK pseudo code:

for
$$i = 0:n_1 - 1$$

for $j = 0:i$
for $k = 0:n_2 - 1$
 $C[i][j] + A[i][k] * A[j][k]$

SYRK iteration space:

Here we assume that each C[i][j] is initialized to 0 in the beginning.

Loomis-Whitney inequalitiy

- For the 2d object G, $Area(G) \leq \phi_x \phi_y$
- For the 3d object H, $Volume(H) \leq \sqrt{\phi_{xy}\phi_{yz}\phi_{xz}}$

Lemma

Let $V \in \mathbb{Z}^3$ and $\phi_{ij}(V)$ be the projection of V on the i-j plane, i.e., $\phi_{ij}(V) = \{(i,j) : \exists k, (i,j,k) \in V\}$. Similarly $\phi_{jk}(V)$ and $\phi_{ik}(V)$ are defined. Then

$$|V| \leq |\phi_{ij}(V)|^{\frac{1}{2}} |\phi_{jk}(V)|^{\frac{1}{2}} |\phi_{ik}(V)|^{\frac{1}{2}}.$$

Extension of Loomis-Whitney inequality

Theorem (Lemma 3, Ballard et al., SPAA 2023.)

Let $V = \{(i,j,k) \in \mathbb{Z}^3 : j < i\}$ and $\phi_{ij}(V)$ be the projection of V on the i-j plane, i.e., $\phi_{ij}(V) = \{(i,j) : \exists k, (i,j,k) \in V\}$. Similarly $\phi_{jk}(V)$ and $\phi_{ik}(V)$ are defined. Then

$$|2|V| \leq |\phi_{jk}(V) \cup \phi_{ik}(V)| (2|\phi_{ij}(V)|)^{\frac{1}{2}}$$

Proof: Let
$$\tilde{V} = \{(i,j,k) \in \mathbb{Z}^3 : (j,i,k) \in V\}$$
.
$$|V| = |\tilde{V}| \text{ and } |V \cup \tilde{V}| = 2|V|$$

$$\phi_{ij}(\tilde{V}) = \{(i,j) : (j,i) \in \phi_{ij}(V)\} \text{ and }$$

$$|\phi_{ij}(V) \cup \phi_{ij}(\tilde{V})| = 2|\phi_{ij}(V)|$$

$$\phi_{jk}(\tilde{V}) = \phi_{ik}(V), \ \phi_{ik}(\tilde{V}) = \phi_{jk}(V) \text{ and }$$

$$\phi_{ik}(V \cup \tilde{V}) = \phi_{ik}(V \cup \tilde{V}) = \phi_{ik}(V) \cup \phi_{ik}(V)$$

Applying the previous lemma (Loomis-Whitney inequality) on $V \cup \tilde{V}$ yields the mentioned inequality.

Parallel memory-independent communication lower bounds for SYRK

We focus on the computation of the entries below the diagonal of C.

for
$$i = 0:n_1 - 1$$

for $j = 0:i - 1$
for $k = 0:n_2 - 1$
 $C[i][j] + A[i][k] * A[j][k]$

- The computation is load balanced each processor performs $\frac{n_1(n_1-1)n_2}{2P}$ loop iterations
- One copy of data is in the system there exists a processor whose input data at the start plus output data at the end must be at most $\frac{n_1(n_1-1)/2+n_1n_2}{D}$ words
 - Will analyze data transfers for this processor
 - F be the set of indices (i, j, k) associated with loop iterations performed on this processor

Optimization problem to compute communication lower bound

Minimize
$$|\phi_{ik}(F) \cup \phi_{jk}(F)| + |\phi_{ij}(F)|$$
 s.t. $(2|\phi_{ij}(F)|)^{\frac{1}{2}} |\phi_{ik}(F) \cup \phi_{jk}(F)| \ge 2|F| = \frac{n_1(n_1 - 1)n_2}{P}$

 $|\phi_{ik}(F) \cup \phi_{jk}(F)|$: number of accessed entries of A $|\phi_{ij}(F)|$: number of accessed entries of C

- Using Lagrange multipliers, optimal value obtained when $|\phi_{ik}(F) \cup \phi_{jk}(F)| = 2|\phi_{ij}(F)| = \left(\frac{n_1(n_1-1)n_2}{P}\right)^{\frac{2}{3}}$
- Lower bound = $|\phi_{ik}(F) \cup \phi_{jk}(F)| + |\phi_{ij}(F)|$ data owned by the processor = $\frac{3}{2} \left(\frac{n_1(n_1-1)n_2}{P} \right)^{\frac{2}{3}} \frac{n_1(n_1-1)/2 + n_1n_2}{P}$

Symmetric Rank-2k (SYR2K) update

 $C = A \cdot B^T + B \cdot A^T$, where A and B are $n_1 \times n_2$ matrices. C is an $n_1 \times n_1$ symmetric matrix.

SYR2K pseudo code:

for
$$i = 0:n_1 - 1$$

for $j = 0:i$
for $k = 0:n_2 - 1$
 $C[i][j] + = A[i][k] * B[j][k] + A[j][k] * B[i][k]$

Question:

Obtain parallel memory-independent communication lower bound for SYR2K. Assume that all the operations of each loop iteration are performed on the same processor, i.e, A[i][k] * B[j][k] and A[j][k] * B[i][k] are computed on one processor.