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Matrix factorizations

Useful to solve systems of linear equations Ax = b

Popular factorizations

LU factorization
QR factorization
Singular value decomposition
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Important definitions

Vector norm for x ∈ Rn

The Euclidean norm of x is represented as ||x|| or ||x||2 and defined as

||x|| =
√∑n

i=1 x
2
i

Matrix norm for A ∈ Rn×n

Frobenius norm, ||A||F =

√√√√ n∑
j=1

n∑
i=1

Aij
2 =

√
trace(AAT )

Spectral norm, ||A||2 = largest singular value of A

Orthogonal matrix

An orthogonal matrix Q satisfies QTQ = QQT = I (the identity matrix)

Q’s rows are orthogonal to each other and have unit norm

Q’s columns are orthogonal to each other and have unit norm
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Singular Value Decomposition (SVD)

It decomposes a matrix A ∈ Rm×n to the form UΣV T

U is an m ×m orthogonal matrix
V is an n × n orthogonal matrix
Σ is an m × n rectangular diagonal matrix

The diagonal entries σi = Σii of Σ are called singular values

σi ≥ 0 and σ1 ≥ σ2 ≥ · · · ≥ σmin(m,n)

Columns of U and V are known as left and right singular vectors
respectively

If ui , vi are the ith vector of U and V , then A =
∑min(m,n)

i=1 σiuiv
T
i

The largest r such that σr 6= 0 is called the rank of the matrix

Suraj Kumar (Inria & ENS Lyon) Matrix factorization CR12 5 / 29



SVD and rank of a matrix

SVD represents a matrix as the sum of r rank one matrices

= + + · · · +

||A||2F =
∑min(m,n)

i=1 σ2
i =

∑r
i=1 σ

2
i

If r ′ ≤ r and Ã =
∑r ′

i=1 σiuiv
T
i , then

||A− Ã||2F =

min(m,n)∑
i=r ′+1

σ2
i =

r∑
i=r ′+1

σ2
i

Useful for compression, dimension reduction and low-rank approximation

Expensive to compute and hard to parallelize
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Algebra of LU factorization with an example

Given the matrix A =

2 6 5
4 15 11
6 30 23



Let L1 =

 1 0 0
−2 1 0
−3 0 1

, L1A =

2 6 5
0 3 1
0 12 8



Let L2 =

1 0 0
0 1 0
0 −4 1

, L2L1A =

2 6 5
0 3 1
0 0 4



Let U =

2 6 5
0 3 1
0 0 4

, L2L1A = U
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Algebra of LU factorization

L2L1A = U =⇒ A = (L2L1)−1U = L−11 L−12 U

L1=

 1 0 0
−2 1 0
−3 0 1

, L−11 =

1 0 0
2 1 0
3 0 1

, L2=

1 0 0
0 1 0
0 −4 1

, L−12 =

1 0 0
0 1 0
0 4 1



L−11 L−12 =

1 0 0
2 1 0
3 4 1



A =

2 6 5
4 15 11
6 30 23

 =

1 0 0
2 1 0
3 4 1

2 6 5
0 3 1
0 0 4

 = LU, where L = L−11 L−12
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The need of pivoting (or row exchanges): PA = LU

To avoid division by 0 or small diagonal elements (for stability)

A =

0 2 4
3 1 2
6 8 7

 has an LU factorization if we permute the rows of

the matrix A

PA =

3 1 2
0 2 4
6 8 7

 =

1 0 0
0 1 0
2 3 1

3 1 2
0 2 4
0 0 −9



Here P =

0 1 0
1 0 0
0 0 1
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Communication lower bounds

Matrix multiplication lower bounds apply to LU factorization using
reduction [Ballard et. al., 09]

 I −B
A I

I

 =

 I
A I

I

I −B
I AB

I



Lower bounds

Sequential lower bound on bandwidth = Ω( n3√
M

)

Memory-dependent parallel lower bound on bandwidth = Ω( n3

P
√
M

)

Memory-independent parallel lower bound on bandwidth = Ω
(

n2

P
2
3

)
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LU factorization

LU factorization (Gaussian elimination):

Convert a matrix A into product L× U

L is lower triangular with diagonal 1

U is upper triangular

L and U stored in place with A

schemes: Cholesky, QR, and LU. No algorithmic variants for a
particular method were considered.

4. ORIGINAL CONTRIBUTION
The unique contribution of this survey is in implementing all the
algorithms, being compared using the same framework, the same
data layout, and the same set of parallel layout translation routines,
as well as the same runtime scheduling system. This allows for
gaining a level of insight into the trade-offs of the different methods
that one could not reach by comparing published data for different
implementations in different environments.

5. ALGORITHMS
5.1 Partial Pivoting
The LAPACK block LU factorization is the main point of refer-
ence here, and LAPACK naming convention is followed. The LU
factorization of a matrix A has the form

PA = LU,

where L is a unit lower triangular matrix, U is an upper triangular
matrix and P is a permutation matrix. The LAPACK algorithm
proceeds in the following steps: Initially, a set of NB columns (the
panel) is factored and a pivoting pattern is produced (implemented
by the DGETF2 routine). Then the elementary transformations,
resulting from the panel factorization, are applied in a block fash-
ion to the remaining part of the matrix (the trailing submatrix).
This involves swapping of up to NB rows of the trailing submatrix
(DLASWP), according to the pivoting pattern, application of a tri-
angular solve with multiple right-hand-sides to the top NB rows of
the trailing submatrix (DTRSM), and finally application of matrix
multiplication of the form Ai j  Ai j�Aik⇥Ak j (DGEMM), where
Aik is the panel without the top NB rows, Ak j is the top NB rows of
the trailing submatrix and Ai j is the trailing submatrix without the
top NB rows. Then the procedure is applied repeatedly, descending
down the diagonal of the matrix (Figure 1). The block algorithm is
described in detail in section 2.6.3 of the book by Demmel [13]

U (done)

L
 (

d
o

n
e

)

Aij

Akj

Aik

Figure 1: The block LU factorization (Level 3 BLAS algorithm
of LAPACK).

5.2 Incremental Pivoting
The worst performance-limiting aspect of Gaussian elimination with
partial pivoting is the panel factorization operation. First, it is an
inefficient operation, usually based on a sequence of calls to Level 2
BLAS. Second, it introduces synchronization, by locking the entire
panel of the matrix at a time. Therefore, it is desirable to split
the panel factorization into a number of smaller, finer-granularity

operations, which is the basic premise of the incremental pivoting
implementation, also known in literature as the tile LU factorization.

In this algorithm, instead of factoring the panel one column at a
time, the panel is factored one tile at a time. The operation proceeds
as follows: First the diagonal tile is factored, using the standard LU
factorization procedure. Then the factored tile is combined with the
tile directly below it, and factored. Then the re-factored diagonal tile
is combined with the next tile, and factored again. The algorithm
descends down the panel until the bottom of the matrix is reached.
At each step, the standard partial pivoting procedure is applied to
the tiles being factored. Also, at each step, all the tiles to the right of
the panel are updated with the elementary transformations resulting
from the panel operations. This way of pivoting is basically the
idea of pairwise pivoting applied at the level of tiles, rather than
individual elements (Figure 2). The main benefit comes from the
fact that updates of the trailing submatrix can proceed alongside
panel factorizations, leading to a very efficient parallel execution,
where multiple steps of the algorithm are smoothly pipelined.

Figure 2: Incremental LU factorization.

5.3 Tournament Pivoting
The panel factorization is one of the most important tasks, because
it creates parallelism for the update of the trailing submatrices.
Hence, its ineffective execution suffices to reduce considerably
the performance of the overall algorithm. Classic approaches that
implement partial pivoting algorithm spend more time to perform
communication during the panel factorization and hence are not
optimal. This is because pivoting forces the algorithm to factor
the panel column by column, and then this leads to an algorithm
which communicates asymptotically more than the established lower
bounds [11].

The basic idea of communication avoiding algorithms, initially intro-
duced for distributed memories [11, 23], and later adapted to shared
memories [14], is to replace the search for maximum, performed
at each column, by a single reduction of the maximums altogether.
This is done thanks to a new pivoting strategy referred to as tour-
nament pivoting (TSLU), which performs redundant computations
and is shown to be stable in practice. TSLU reduces the bottleneck
introduced by the pivoting operation through a block reduction op-
eration to factor the panel. It factors the panel in two steps. The
first one identifies rows, which can be used as good pivots for the
factorization of the whole panel, with a tournament selection. The
second one swaps the selected pivot to the top of the panel, and then
factors the entire panel without pivoting in a tiled Cholesky-like
operation. With this strategy, the panel is efficiently parallelized and
the communication is provably minimized.

Akk

LU Algorithm

For k = 1 . . . n − 1:

For i = k + 1 . . . n,
Ai ,k ← Ai ,k/Ak,k (column/panel preparation)

For i = k + 1 . . . n,
For j = k + 1 . . . n,
Ai ,j ← Ai ,j − Ai ,kAk,j (update)
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Block LU factorization

Partition of a n × n matrix A

A =

(
A11 A12

A21 A22

)
Here A11 is of size b × b, A21 is of size (n − b)× b, A12 is of size
b × (n − b) and A22 is of size (n − b)× (n − b).

Structure of LU factorization algorithm

The first iteration computes the factorization:

A =

(
A11 A12

A21 A22

)
=

(
L11
L21 In−b

)(
U11 U12

A′

)
The algorithm continues recursively on the trailing matrix A′.
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Block LU factorization

1 Compute the LU factorization of the first block column(
A11

A21

)
=

(
L11
L21

)
U11

2 Solve the triangular system

L11U12 = A12

3 Update the trailing matrix

A′ = A22 − L21U12

4 Compute recursively the block LU factorization of A′
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Terminology related to QR factorization

An orthogonal matrix Q satisfies QTQ = QQT = I (the identity matrix)

Q must be square

Q’s rows are orthogonal to each other and have unit norm

Q’s columns are orthogonal to each other and have unit norm

A matrix U has orthonormal columns if UTU = I (the identity matrix)

U’s columns are orthogonal to each other and have unit norm

U can have more rows than columns, in which case UUT 6= I

Given a matrix A, we can orthogonalize its columns by finding a matrix Q such
that

Q’s columns span the same space as A’s columns

Q has orthonormal columns

there exists a matrix Z such that A = QZ
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QR factorization

The QR factorization is a fundamental matrix factorization:

A = QR =
[
Q̂ Q̃

] [R̂
0

]
= Q̂R̂

if A is m × n, m ≥ n, then Q is m ×m, R is m × n, Q̂ is m × n, and
R̂ is n × n

Q is orthogonal, Q̂ has orthonormal columns, and R is upper
triangular

Q̂ is an orthogonalization of A
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Classical algorithms for QR factorization

1 Gram-Schmidt process

intuitive: each vector is orthogonalized against previous ones by
subtracting out components of the vector in previous directions
has numerical problems (vectors aren’t always numerically orthonormal)
two variants “classical” and “modified” are mathematically identical

2 Householder QR

uses orthogonal matrices to transform input to triangular form
numerically stable
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Gram-Schmidt

Classical Gram-Schmidt (CGS) process

Require: A =
[
x1 x2 · · · xn

]
for i = 1 to n do

vi = xi
for j = 1 to i − 1 do

rji = qTj xi . compute size of projection of ith col of A onto qj
vi = vi − rjiqj . remove this component from vector vi

end for
rii = ‖vi‖2
qi = vi/rii . normalize vector

end for
Ensure: Q =

[
q1 q2 · · · qn

]
has orthonormal columns

Ensure: R is upper triangular and A = QR
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Gram-Schmidt

Modified Gram-Schmidt (MGS) process

Require: A =
[
x1 x2 · · · xn

]
for i = 1 to n do

vi = xi
for j = 1 to i − 1 do

rji = qTj vi . compute size of projection of current vector onto qj
vi = vi − rjiqj . remove this component from vector vi

end for
rii = ‖vi‖2
qi = vi/rii . normalize vector

end for
Ensure: Q =

[
q1 q2 · · · qn

]
has orthonormal columns

Ensure: R is upper triangular and A = QR
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Householder transformation

v is a unit vector

The reflection hyperplane can be
defined by its normal vector v

(I − 2vvT )x is the reflection of point
x with the hyperplane

v

x
Reflection hyperplane

P = I − 2vvT matrix is known as the Householder matrix

P is symmetric and orthogonal, P2 = I
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Main idea of Householder QR factorization

Look for a Householder matrix that annihilates the elements of a vector x ,
except first one:

Px = y , ||x ||2 = ||y ||2, y = σe1, σ = ±||x ||2

The choice of sign is made to avoid cancellation or small numerical values
while computing v1 = x1 − σ. Here v1, x1 are the first elements of vectors
v , x respectively.

v = x − y = x − σe1
σ = −sign(x1)||x ||2, v = x − σe1
u =

v

||v ||2
,P = I − 2uuT
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Householder QR algorithm

Given vector x , a Householder transformation I − 2uuT maps x to σe1

u is called the Householder vector

Require: A =
[
x1 x2 · · · xn

]
for i = 1 to n do

Compute Householder vector ui from xi
A = (I − 2uiu

T
i )A . apply Householder transformation

end for
R = A

Ensure: U =
[
u1 u2 · · · un

]
is lower triangular

Ensure: R is upper triangular and R = QTA with
Q = (I − 2u1u

T
1 ) · · · (I − 2unu

T
n )
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Householder QR computational complexity

Let A ∈ Rm×n, we count the number of operation to update A
(A = (I − 2uiu

T
i )A = A− 2uiu

T
i A) in each iteration i .

Operations per iteration

Dot product w = uTi A(i : m, i : n) : 2(m − i)(n − i)

Outer product uiw : (m − i)(n − i)

Subtraction A(i : m, i : n) = A(i : m, i : n)− 2uiw : (m − i)(n − i)

The number of operations to multiply 2 with w is (n − i), however it is a lower
order term. Hence we do not consider it explicitly.

Operations in Householder QR factorization
n∑

i=1

= 4(m − i)(n − i) = 4
n∑

i=1

= 4(mn − (m + n)i + i2)

≈ 4mn2 − 4(m + n)
n2

2
+ 4

n3

3
= 2mn2 − 2

n3

3
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QR factorization

Q can be stored in compact representation

Structure of block QR algorithm is similar to the block LU algorithm

Matrix communication lower bounds are also valid for the
Householder/CGS/MGS QR factorization
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QR factorization algorithms

Algorithm # flops # words stability

CGS

2mn2 + O(n3)

O(mn2) Bad

MGS O(mn2) Okay

HouseholderQR O(mn2) Good
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TSQR: QR factorization of a tall skinny matrix
QR factorization of a m × n matrix with m >> n

The goal and process of Householder QR:

annihilate entries below diagonal to obtain upper triangular form

work column-by-column, left-to-right

Tall-Skinny QR idea (Demmel, Grigori, Hoemmen, Langou ’12):

change the order of annihilation to minimize communication

work row-by-row, top to bottom
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Algebra of TSQR

A1

A2

A3

A4

R
(2)
1

R
(2)
2

R
(2)
3

R
(2)
4

R
(1)
1

R
(1)
3

R
(0)
1

A =


A1

A2

A3

A4

 =


Q

(2)
1 R

(2)
1

Q
(2)
2 R

(2)
2

Q
(2)
3 R

(2)
3

Q
(2)
4 R

(2)
4

 =


Q

(2)
1

Q
(2)
2

Q
(2)
3

Q
(2)
4




R
(2)
1

R
(2)
2

R
(2)
3

R
(2)
4




R
(2)
1

R
(2)
2

R
(2)
3

R
(2)
4

 =

(
Q

(1)
1 R

(1)
1

Q
(1)
2 R

(1)
2

)
=

(
Q

(1)
1

Q
(1)
2

)(
R
(1)
1

R
(1)
2

)
,

(
R
(1)
1

R
(1)
2

)
= Q

(0)
1 R

(0)
1

Q is represented implicitly as a product.
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Flexibility of TSQR

Parallel TSQR

Assuming block row layout on P
processors

Communication cost is that of
binomial-tree reduction:
β · O(n2 logP) + α · O(logP)

A1

A2

A3

A4

R
(2)
1

R
(2)
2

R
(2)
3

R
(2)
4

R
(1)
1

R
(1)
3

R
(0)
1

Sequential TSQR

Assuming cache size is Ω(n2)

It streams through matrix once
achieving O(mn) amount of data
transfers

A1

A2

A3

A4

R(1)

A2

R(2)

A3

R(3)

A4

R
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