Matrix factorization

Suraj Kumar

Inria & ENS Lyon Email:suraj.kumar@ens-lyon.fr

CR12: September 2024 https://surakuma.github.io/courses/daamtc.html

Suraj Kumar (Inria & ENS Lyon) [Matrix factorization](#page-31-0) CR12 1/29

4 **D F**

• Useful to solve systems of linear equations $Ax = b$

- Popular factorizations
	- LU factorization
	- QR factorization
	- Singular value decomposition

4 0 8

Important definitions

Vector norm for $x \in \mathbb{R}^n$

The Euclidean norm of x is represented as $||x||$ or $||x||_2$ and defined as $||x|| = \sqrt{\sum_{i=1}^n x_i^2}$

Matrix norm for $A \in \mathbb{R}^{n \times n}$

Frobenius norm,
$$
||A||_F = \sqrt{\sum_{j=1}^n \sum_{i=1}^n A_{ij}^2} = \sqrt{\text{trace}(AA^T)}
$$

Spectral norm, $||A||_2 =$ largest singular value of A

Orthogonal matrix

An orthogonal matrix Q satisfies $Q^T Q = Q Q^T = I$ (the identity matrix)

- Q's rows are orthogonal to each other and have unit norm
- Q's columns are orthogonal to each other and [hav](#page-1-0)[e u](#page-3-0)[n](#page-3-0)[it](#page-2-0) n[or](#page-0-0)[m](#page-2-0)

Suraj Kumar (Inria & ENS Lyon) [Matrix factorization](#page-0-0) CR12 3/29

1 [Singular value decomposition](#page-3-0)

[LU factorization](#page-6-0)

[QR factorization](#page-14-0)

4 **D F**

э → < 3H

Singular Value Decomposition (SVD)

- It decomposes a matrix $A \in \mathbb{R}^{m \times n}$ to the form $U \Sigma V^{T}$
	- \bullet U is an $m \times m$ orthogonal matrix
	- V is an $n \times n$ orthogonal matrix
	- Σ is an $m \times n$ rectangular diagonal matrix
- The diagonal entries $\sigma_i = \sum_{ii}$ of Σ are called singular values $\bullet \ \sigma_i \geq 0$ and $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_{\min(m,n)}$
- Columns of U and V are known as left and right singular vectors respectively
- If u_i, v_i are the ith vector of U and V , then $A = \sum_{i=1}^{\min(m,n)} \sigma_i u_i v_i^T$
- The largest r such that $\sigma_r \neq 0$ is called the rank of the matrix

SVD and rank of a matrix

 \bullet SVD represents a matrix as the sum of r rank one matrices

= + + · · · +

$$
\bullet \ ||A||_F^2 = \sum_{i=1}^{\min(m,n)} \sigma_i^2 = \sum_{i=1}^r \sigma_i^2
$$

• If
$$
r' \le r
$$
 and $\tilde{A} = \sum_{i=1}^{r'} \sigma_i u_i v_i^T$, then

$$
||A - \tilde{A}||_F^2 = \sum_{i=r'+1}^{\min(m,n)} \sigma_i^2 = \sum_{i=r'+1}^r \sigma_i^2
$$

- Useful for compression, dimension reduction and low-rank approximation
- Expensive to compute and hard to parallelize

∢ 口 ≯ ∢ 何

[Singular value decomposition](#page-3-0)

2 [LU factorization](#page-6-0)

[QR factorization](#page-14-0)

4 **D F**

÷. \blacktriangleright \blacktriangleleft ÷

 \sim

Algebra of LU factorization with an example

Given the matrix
$$
A = \begin{pmatrix} 2 & 6 & 5 \\ 4 & 15 & 11 \\ 6 & 30 & 23 \end{pmatrix}
$$

\n• Let $L_1 = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -3 & 0 & 1 \end{pmatrix}$, $L_1 A = \begin{pmatrix} 2 & 6 & 5 \\ 0 & 3 & 1 \\ 0 & 12 & 8 \end{pmatrix}$
\n• Let $L_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -4 & 1 \end{pmatrix}$, $L_2 L_1 A = \begin{pmatrix} 2 & 6 & 5 \\ 0 & 3 & 1 \\ 0 & 0 & 4 \end{pmatrix}$
\n• Let $U = \begin{pmatrix} 2 & 6 & 5 \\ 0 & 3 & 1 \\ 0 & 0 & 4 \end{pmatrix}$, $L_2 L_1 A = U$

 \setminus $\overline{1}$

4 0 F

- ← 冊 →

÷

$$
L_2L_1A = U \implies A = (L_2L_1)^{-1}U = L_1^{-1}L_2^{-1}U
$$

$$
L_1\hspace{-0.1cm}=\hspace{-0.1cm}\begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -3 & 0 & 1 \end{pmatrix}\hspace{-0.1cm},\ L_1^{-1}\hspace{-0.1cm}=\hspace{-0.1cm}\begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 0 & 1 \end{pmatrix}\hspace{-0.1cm},\ L_2\hspace{-0.1cm}=\hspace{-0.1cm}\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -4 & 1 \end{pmatrix}\hspace{-0.1cm},\ L_2^{-1}\hspace{-0.1cm}=\hspace{-0.1cm}\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 4 & 1 \end{pmatrix}
$$

$$
L_1^{-1}L_2^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 4 & 1 \end{pmatrix}
$$

$$
A = \begin{pmatrix} 2 & 6 & 5 \\ 4 & 15 & 11 \\ 6 & 30 & 23 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 4 & 1 \end{pmatrix} \begin{pmatrix} 2 & 6 & 5 \\ 0 & 3 & 1 \\ 0 & 0 & 4 \end{pmatrix} = LU, \text{ where } L = L_1^{-1}L_2^{-1}
$$

Suraj Kumar (Inria & ENS Lyon) [Matrix factorization](#page-0-0) CR12 9/29

Þ

メロトメ 倒 トメ ミトメ ミト

 $2Q$

The need of pivoting (or row exchanges): $\overline{PA} = LU$

To avoid division by 0 or small diagonal elements (for stability)

 $A =$ $\sqrt{ }$ \mathcal{L} 0 2 4 3 1 2 6 8 7 \setminus has an LU factorization if we permute the rows of the matrix A

$$
PA = \begin{pmatrix} 3 & 1 & 2 \\ 0 & 2 & 4 \\ 6 & 8 & 7 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 3 & 1 \end{pmatrix} \begin{pmatrix} 3 & 1 & 2 \\ 0 & 2 & 4 \\ 0 & 0 & -9 \end{pmatrix}
$$

Here $P = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

つひい

Matrix multiplication lower bounds apply to LU factorization using reduction [Ballard et. al., 09]

$$
\begin{pmatrix} I & -B \\ A & I \end{pmatrix} = \begin{pmatrix} I & & \\ A & I & \\ & & I \end{pmatrix} \begin{pmatrix} I & & -B \\ & I & AB \\ & & I \end{pmatrix}
$$

Lower bounds

- Sequential lower bound on bandwidth $= \Omega(\frac{n^3}{\sqrt{M}})$
- Memory-dependent parallel lower bound on bandwidth $= \Omega(\frac{n^3}{R_1})$ $\frac{n^3}{P\sqrt{M}}$
- Memory-independent parallel lower bound on bandwidth $= \Omega \left(\frac{n^2}{2} \right)$

つへへ

 $P^{\frac{2}{3}}$ \setminus

LU factorization

LU factorization (Gaussian elimination):

- Convert a matrix A into product $L \times U$
- \bullet L is lower triangular with diagonal 1
- \bullet U is upper triangular
- \bullet L and U stored in place with A

LU Algorithm

Figure 1: The block LU factorization (Level 3 BLAS algorithm $A_{i,k} \leftarrow A_{i,k} / A_{k,k}$ (column/panel preparation) \mathcal{F} worst performance limiting aspect of \mathcal{F} partial pivoting is the panel factorization operation. First, it is an inefficient operation, usually based on a sequence of calls to Level 2 \mathbf{S} panel of the matrix at a time. Therefore, it is desirable to split \overline{y} \overline{y} \overline{y} \overline{y} \overline{y} For $k = 1... n - 1$: • For $i = k + 1 \ldots n$. • For $i = k + 1 \ldots n$. For $i = k + 1 \ldots n$. $A_{i,j} \leftarrow A_{i,j} - A_{i,k}A_{k,j}$ (update)

Block LU factorization

Partition of a $n \times n$ matrix A

$$
A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}
$$

Here A_{11} is of size $b \times b$, A_{21} is of size $(n - b) \times b$, A_{12} is of size $b \times (n - b)$ and A_{22} is of size $(n - b) \times (n - b)$.

Structure of LU factorization algorithm

• The first iteration computes the factorization:

$$
A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} L_{11} & & \\ L_{21} & I_{n-b} \end{pmatrix} \begin{pmatrix} U_{11} & U_{12} \\ & A' \end{pmatrix}
$$

The algorithm continues recursively on the trailing matrix A' .

Block LU factorization

1 Compute the LU factorization of the first block column

$$
\begin{pmatrix} A_{11} \\ A_{21} \end{pmatrix} = \begin{pmatrix} L_{11} \\ L_{21} \end{pmatrix} U_{11}
$$

2 Solve the triangular system

$$
L_{11}U_{12}=A_{12}
$$

3 Update the trailing matrix

$$
A' = A_{22} - L_{21}U_{12}
$$

4 0 8

 \bullet Compute recursively the block LU factorization of A'

[Singular value decomposition](#page-3-0)

[LU factorization](#page-6-0)

4 0 F

 \leftarrow \equiv \blacktriangleright \blacktriangleleft ∍

Terminology related to QR factorization

An **orthogonal** matrix Q satisfies $Q^T Q = Q Q^T = I$ (the identity matrix)

- Q must be square
- Q's rows are orthogonal to each other and have unit norm
- Q's columns are orthogonal to each other and have unit norm

4 0 8

Terminology related to QR factorization

An **orthogonal** matrix Q satisfies $Q^T Q = Q Q^T = I$ (the identity matrix)

- Q must be square
- Q's rows are orthogonal to each other and have unit norm
- Q's columns are orthogonal to each other and have unit norm

A matrix U has $\boldsymbol{\mathsf{orthonormal}}$ columns if $U^{\mathsf{T}}U=I$ (the identity matrix)

- U's columns are orthogonal to each other and have unit norm
- \bullet U can have more rows than columns, in which case $UU^{T} \neq I$

Terminology related to QR factorization

An **orthogonal** matrix Q satisfies $Q^T Q = Q Q^T = I$ (the identity matrix)

- Q must be square
- Q's rows are orthogonal to each other and have unit norm
- Q's columns are orthogonal to each other and have unit norm

A matrix U has $\boldsymbol{\mathsf{orthonormal}}$ columns if $U^{\mathsf{T}}U=I$ (the identity matrix)

- U's columns are orthogonal to each other and have unit norm
- \bullet U can have more rows than columns, in which case $UU^{T} \neq I$

Given a matrix A, we can **orthogonalize** its columns by finding a matrix Q such that

- \bullet Q 's columns span the same space as A's columns
- Q has orthonormal columns
- there exists a matrix Z such that $A = QZ$

The QR factorization is a fundamental matrix factorization:

$$
A = QR = \begin{bmatrix} \hat{Q} & \tilde{Q} \end{bmatrix} \begin{bmatrix} \hat{R} \\ 0 \end{bmatrix} = \hat{Q}\hat{R}
$$

- if A is $m \times n$, $m \ge n$, then Q is $m \times m$, R is $m \times n$, \hat{Q} is $m \times n$, and \hat{R} is $n \times n$
- \bullet Q is orthogonal, \hat{Q} has orthonormal columns, and R is upper triangular
- \hat{Q} is an orthogonalization of A

1 Gram-Schmidt process

- intuitive: each vector is orthogonalized against previous ones by subtracting out components of the vector in previous directions
- has numerical problems (vectors aren't always numerically orthonormal)
- two variants "classical" and "modified" are mathematically identical

2 Householder QR

- uses orthogonal matrices to transform input to triangular form
- numerically stable

Classical Gram-Schmidt (CGS) process **Require:** $A = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}$ for $i = 1$ to n do $v_i = x_i$ for $j = 1$ to $i - 1$ do $r_{ji} = q_j^T x_i$ \quad \triangleright compute size of projection of *i*th col of A onto q_j $v_i = v_i - r_{ii} q_i$. remove this component from vector v_i end for $r_{ii} = ||v_i||_2$
 $q_i = v_i/r_{ii}$ \triangleright normalize vector end for **Ensure:** $Q = \begin{bmatrix} q_1 & q_2 & \cdots & q_n \end{bmatrix}$ has orthonormal columns **Ensure:** R is upper triangular and $A = QR$

- K 로 X K 로 X H 로

ൗഢ

Modified Gram-Schmidt (MGS) process **Require:** $A = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}$ for $i = 1$ to n do $v_i = x_i$ for $j = 1$ to $j - 1$ do $r_{ji} = q_j^T v_i$ \triangleright compute size of projection of current vector onto q_j $v_i = v_i - r_{ii} q_i$. remove this component from vector v_i end for $r_{ii} = ||v_i||_2$
 $q_i = v_i/r_{ii}$ \triangleright normalize vector end for **Ensure:** $Q = \begin{bmatrix} q_1 & q_2 & \cdots & q_n \end{bmatrix}$ has orthonormal columns **Ensure:** R is upper triangular and $A = QR$

- K 로 X K 로 X H 로

Householder transformation

 $P = I - 2vv^{T}$ matrix is known as the Householder matrix

P is symmetric and orthogonal, $P^2 = I$

Main idea of Householder QR factorization

Look for a Householder matrix that annihilates the elements of a vector x, except first one:

$$
Px = y
$$
, $||x||_2 = ||y||_2$, $y = \sigma e_1$, $\sigma = \pm ||x||_2$

The choice of sign is made to avoid cancellation or small numerical values while computing $v_1 = x_1 - \sigma$. Here v_1 , x_1 are the first elements of vectors v , x respectively.

$$
v = x - y = x - \sigma e_1
$$

\n
$$
\sigma = -\text{sign}(x1)||x||_2, v = x - \sigma e_1
$$

\n
$$
u = \frac{v}{||v||_2}, P = I - 2uu^T
$$

Given vector x, a **Householder transformation** $I - 2uu^{T}$ maps x to σe_1 \bullet u is called the **Householder vector**

Require: $A = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}$ for $i = 1$ to n do Compute Householder vector u_i from x_i $A = (I - 2u_iu_i^T)$ \triangleright apply Householder transformation end for $R = A$ **Ensure:** $U = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix}$ is lower triangular **Ensure:** R is upper triangular and $R = Q^TA$ with $Q = (I - 2u_1u_1^T)\cdots(I - 2u_nu_n^T)$

Householder QR computational complexity

Let $A \in \mathbb{R}^{m \times n}$, we count the number of operation to update A $(A = (I - 2u_iu_i^T)A = A - 2u_iu_i^T A)$ in each iteration *i*.

Operations per iteration

- Dot product $w = u_i^T A(i : m, i : n) : 2(m i)(n i)$
- Outer product $u_iw:(m-i)(n-i)$
- **•** Subtraction $A(i : m, i : n) = A(i : m, i : n) 2u_iw : (m i)(n i)$

The number of operations to multiply 2 with w is $(n - i)$, however it is a lower order term. Hence we do not consider it explicitly.

Operations in Householder QR factorization

$$
\sum_{i=1}^{n} = 4(m - i)(n - i) = 4\sum_{i=1}^{n} = 4(mn - (m + n)i + i^{2}
$$

$$
\approx 4mn^{2} - 4(m + n)\frac{n^{2}}{2} + 4\frac{n^{3}}{3} = 2mn^{2} - 2\frac{n^{3}}{3}
$$

)

• Q can be stored in compact representation

• Structure of block QR algorithm is similar to the block LU algorithm

Matrix communication lower bounds are also valid for the Householder/CGS/MGS QR factorization

K ロ ▶ K 倒 ▶

化重新润滑

D

[Singular value decomposition](#page-3-0)

[LU factorization](#page-6-0)

4 0 8

The goal and process of Householder QR:

- **•** annihilate entries below diagonal to obtain upper triangular form
- work column-by-column, left-to-right

Tall-Skinny QR idea (Demmel, Grigori, Hoemmen, Langou '12):

- change the order of annihilation to minimize communication
- work row-by-row, top to bottom

つひひ

Algebra of TSQR

is represented implicitly as a product.

Suraj Kumar (Inria & ENS Lyon) [Matrix factorization](#page-0-0) CR12 28/29

Flexibility of TSQR

Parallel TSQR

- Assuming block row layout on P processors
- Communication cost is that of binomial-tree reduction: $\beta \cdot O(n^2 \log P) + \alpha \cdot O(\log P)$

Sequential TSQR

- Assuming cache size is $\Omega(n^2)$
- It streams through matrix once achieving $O(mn)$ amount of data transfers

Suraj Kumar (Inria & ENS Lyon) [Matrix factorization](#page-0-0) CR12 29 / 29