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Matrix factorizations

@ Useful to solve systems of linear equations Ax = b

@ Popular factorizations
o LU factorization
o QR factorization
e Singular value decomposition
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Important definitions

Vector norm for x € R”

The Euclidean norm of x is represented as ||x|| or ||x||> and defined as

[IXI] = /25 X

Matrix norm for A € R"*"

Frobenius norm, [|A||r =

Spectral norm, ||A||2 = largest singular value of A

Orthogonal matrix

An orthogonal matrix Q satisfies Q7 Q = QQT = / (the identity matrix)
@ @'s rows are orthogonal to each other and have unit norm

@ Q'’s columns are orthogonal to each other and have unit norm

v
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Singular Value Decomposition D)

o It decomposes a matrix A € R™*" to the form ULV T
e U is an m x m orthogonal matrix
e V is an n x n orthogonal matrix
e X is an m X n rectangular diagonal matrix

The diagonal entries o; = ¥j; of X are called singular values
ec;>0andoy >002>--- 2> Omin(m,n)

@ Columns of U and V are known as left and right singular vectors
respectively

If u;, v; are the ith vector of U and V/, then A = me(m" U,-u,-v,-T

The largest r such that o, # 0 is called the rank of the matrix
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D and rank of a matrix

@ SVD represents a matrix as the sum of r rank one matrices

o llAlE = X ™" o = i of
o If ¥ <rand A=YX1 ojujv], then

min(m,n)

BoAR= Y 2= Y o

i=r'+1 i=r'+1

@ Useful for compression, dimension reduction and low-rank approximation

@ Expensive to compute and hard to parallelize
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© LU factorization
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Algebra of LU factorization with an example

2 6 5
Given the matrix A= |4 15 11
6 30 23
1 00 2 6 5
oletly=(-21 0}|,LtA=1(0 3 1
-3 01 0 12 8
1 0 O 2 6 5
o letlr, =10 1 0), LL;A=10 3 1
0 -4 1 0 0 4
2 6 5
eletU=1[0 3 1], LLA=U
0 0 4
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Algebra of LU factorization

LLA=U = A= (LL)U=L]'LU

1 00 100 1 0 0 100
Li=l-2 1 0], L;'=[2 1 0|, L,={0 1 Of Ly'=[0 1 0O
-3 0 1 301 0 —4 1 041
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) = LU, where L = L1}
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The need of pivoting (or row exchanges): PA= LU

@ To avoid division by 0 or small diagonal elements (for stability)

0 2 4
@ A= 1|3 1 2| hasan LU factorization if we permute the rows of
6 8 7
the matrix A
3 1 2 1 00 31 2
PA=10 2 4]=(0 1 0 0 2 4
6 8 7 2 31 0 0 -9
010
Here P=|1 0 0
0 01
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Communication lower bounds

@ Matrix multiplication lower bounds apply to LU factorization using
reduction [Ballard et. al., 09]

SEIRRNIEE:

n3

@ Sequential lower bound on bandwidth = Q(m)

Lower bounds

@ Memory-dependent parallel lower bound on bandwidth = Q( :/W)

@ Memory-independent parallel lower bound on bandwidth = Q (
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LU factorization

U (done)

LU factorization (Gaussian elimination):
@ Convert a matrix A into product L x U

@ L is lower triangular with diagonal 1

L (done)

o U is upper triangular
@ L and U stored in place with A

LU Algorithm

Fork=1...n—1:
@ Fori=k+1...n,
Ai k < Aik/ Ak k (column/panel preparation)
@ Fori=k+1...n,
Forj=k+1...n,
A,'J — A,'J = A,'7kAk’J' (update)

v
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Block LU factorization

Partition of a n X n matrix A

Al A
A=
<A21 Azz)
Here Ai1 is of size b x b, Aoy is of size (n — b) X b, A1z is of size
b x (n— b) and Ay is of size (n — b) x (n — b).

Structure of LU factorization algorithm

@ The first iteration computes the factorization:

A <A11 A12> _ (Ln ) <U11 U12)
A1 A Lo1 Ih—p A

@ The algorithm continues recursively on the trailing matrix A’.
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Block LU factorization

©@ Compute the LU factorization of the first block column
A1 L1y
= U
<A21> <L21> 1
@ Solve the triangular system

L11U1p = A2

© Update the trailing matrix

A= Ap — Lo Unn

@ Compute recursively the block LU factorization of A’
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Terminology related to QR factorization

An orthogonal matrix Q satisfies Q7Q = QQ" =/ (the identity matrix)
@ @ must be square
@ @’'s rows are orthogonal to each other and have unit norm

@ @’'s columns are orthogonal to each other and have unit norm
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Terminology related to QR factorization

An orthogonal matrix Q satisfies Q7Q = QQ" =/ (the identity matrix)
@ @ must be square
@ @’'s rows are orthogonal to each other and have unit norm

@ @’'s columns are orthogonal to each other and have unit norm

A matrix U has orthonormal columns if UT U = | (the identity matrix)
@ U’s columns are orthogonal to each other and have unit norm

@ U can have more rows than columns, in which case UUT # |
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Terminology related to QR factorization

An orthogonal matrix Q satisfies Q7Q = QQ" =/ (the identity matrix)
@ @ must be square
@ @’'s rows are orthogonal to each other and have unit norm

@ @’'s columns are orthogonal to each other and have unit norm

A matrix U has orthonormal columns if UT U = | (the identity matrix)
@ U’s columns are orthogonal to each other and have unit norm

@ U can have more rows than columns, in which case UUT # |

Given a matrix A, we can orthogonalize its columns by finding a matrix Q such
that

@ Q'’s columns span the same space as A's columns
@ @ has orthonormal columns

@ there exists a matrix Z such that A= QZ
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QR factorization

The QR factorization is a fundamental matrix factorization:

A= Qr=[0 Q) |g] - ok

e ifAismxn m>n, then Qismxm, Rismxn, @ismxn, and
Risnxn

@ @ is orthogonal, @ has orthonormal columns, and R is upper
triangular

e Qisan orthogonalization of A

CR12  17/29
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Classical algorithms for QR factorization

@ Gram-Schmidt process
e intuitive: each vector is orthogonalized against previous ones by
subtracting out components of the vector in previous directions
o has numerical problems (vectors aren't always numerically orthonormal)
e two variants “classical” and “modified” are mathematically identical

@ Householder QR

e uses orthogonal matrices to transform input to triangular form
e numerically stable

CR12  18/29
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Gram-Schmidt

Classical Gram-Schmidt (CGS) process

Require: A=[x1 x2 -+ Xy
fori=1tondo
Vi = X;
forj=1toi—1do
rji = qux,- > compute size of projection of ith col of A onto g;

Vi = Vi — rjiq; > remove this component from vector v;

end for

rii = || vill2

qi = vi/rii
end for

Ensure: Q = [ql q>
Ensure: R is upper triangular and A = QR

> normalize vector

gn| has orthonormal columns
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Gram-Schmidt

Modified Gram-Schmidt (MGS) process

Require: A=[x1 x2 -+ Xy
for i=1to ndo
Vi = Xj

forj=1toi—1do
rji = quv,- > compute size of projection of current vector onto g;

Vi = Vi — rjiq; > remove this component from vector v;

end for

rii = || vill2

qi = vi/rii
end for

Ensure: Q = [ql q>
Ensure: R is upper triangular and A = QR

> normalize vector

gn| has orthonormal columns
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Householder transformation

Reflection hyperplane
v is a unit vector X

The reflection hyperplane can be
defined by its normal vector v v,

(I — 2w T)x is the reflection of point
x with the hyperplane

@ P =1 — 2w/ matrix is known as the Householder matrix

@ P is symmetric and orthogonal, P? = |
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Main idea of Householder QR factorization

Look for a Householder matrix that annihilates the elements of a vector x,
except first one:

Px =y, l|xll2 = [lyll2,y = ce1,0 = £||x]|2

The choice of sign is made to avoid cancellation or small numerical values

while computing vi = x; — 0. Here vq, x1 are the first elements of vectors
v, x respectively.

V=X—y=X—o0€

o = —sign(x1)||x||2,v = x —oe;
u:L,P:/—QuuT
[Ivl2
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Householder QR algorithm

Given vector x, a Householder transformation / — 2uu’ maps x to oe;

@ u is called the Householder vector

Require: A=[x1 x2 -+ X
fori=1tondo
Compute Householder vector u; from x;

A= (- 2u,-u,-T)A > apply Householder transformation
end for
R=A
Ensure: U= [u1 u> --- up] is lower triangular

Ensure: R is upper triangular and R = QT A with
Q= (I—-2uul) (I —2uuu])
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Householder QR computational complexity

Let A€ R™*" we count the number of operation to update A
(A= (I —2u;ul )A= A —2u;ul A) in each iteration i.

Operations per iteration

@ Dot product w = ul A(i : m,i: n):2(m—i)(n—i)
@ Outer product ujw : (m—i)(n—1i)
@ Subtraction A(i: m,i:n)=A(i: m,i:n)—2uw:(m—i)(n—1i)

The number of operations to multiply 2 with w is (n — i), however it is a lower
order term. Hence we do not consider it explicitly.

Operations in Householder QR factorization

> =4(m—i)n—i) =43 = &(mn—(m+n)i +7)

n n n
~ 4mn® — 4(m — +4— =2mn* —2—
n ( +n)2+ 3 n §
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QR factorization

@ @ can be stored in compact representation
@ Structure of block QR algorithm is similar to the block LU algorithm

@ Matrix communication lower bounds are also valid for the
Householder/CGS/MGS QR factorization
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QR factorization algorithms

Algorithm # flops |# words|stability
CGS O(mn?) | Bad
MGS 2mn? + 0O(n3) O(mn?) | Okay

HouseholderQR O(mn?) | Good
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@ Tall Skinny QR (TSQR) factorization
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TSQR: QR factorization of a tall skinny matrix

QR factorization of a m X n matrix with m >> n

The goal and process of Householder QR:
@ annihilate entries below diagonal to obtain upper triangular form

@ work column-by-column, left-to-right

Tall-Skinny QR idea (Demmel, Grigori, Hoemmen, Langou '12):
@ change the order of annihilation to minimize communication

@ work row-by-row, top to bottom
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Q is represented implicitly as a product.
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Flexibility of TSQR

B U

@ Assuming block row layout on P I

processors n |—s /

@ Communication cost is that of
. . . As —_—
binomial-tree reduction:

B-0(n?log P) + a - O(log P) . 4}/

Sequential TSQR
N HHHHW
@ Assuming cache size is Q(n?) B /
A== A
@ |t streams through matrix once  |—
achieving O(mn) amount of data | » [-------- *
transfers —
P > A
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