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Tensors (multidimensional arrays)

Vector Matrix 3-dimensional tensor 4-dimensional tensor

Neuroscience: measure of calcium fluorescence in a particular pixel during
a time step of a single trial (Pixel × Time × Trial)

Combustion simulation: value of a variable in a spatial grid during a time
step (Grid length × Grid width × Grid height × Variable × Time)

Media: rating of a movie by a user during a time slice (User × Movie ×
Time)

Molecular/quantum simulations: interaction of electrons in d orbitals
with a 4d tensor

Notation convention: Matrix A, tensor A
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Tensor notations (following [Kolda and Bader, 2009])

Let A be a d-dimensional tensor of size n1 × n2 × · · · × nd , A ∈ Rn1×n2×···×nd .

d = 1 , first order tensors: vectors

d = 2, second order tensors: matrices

The element of A is denoted as A(i1, i2, . . . , id).

Fibers: defined by fixing all
indices except one

Mode-1 (column) fibers: A(:, j , k),

Mode-2 (row) fibers: A(i , :, k) and

Mode-3 (tube) fibers: A(i , j , :) of a

3-dimensional tensor A.

Slices: defined by fixing all
indices except two

Horizontal slices: A(i , :, :), Lateral

slices: A(:, j , :) and Frontal slices:

A(:, :, k) of a 3-dimensional tensor A.

Figures from [Kolda and Bader, 2009].
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Tensor preliminaries

The norm of a tensor A ∈ Rn1×n2×···×nd is analogous to the matrix
Frobenius norm, and defined as

||A|| =

√√√√ n1∑
i1=1

n2∑
i2=1

· · ·
nd∑

id=1

A2(i1, i2, · · · , id)

The inner product of A,B ∈ Rn1×n2×···×nd is

〈A,B〉 =
n1∑

i1=1

n2∑
i2=1

· · ·
nd∑

id=1

A(i1, i2, · · · , id)B(i1, i2, · · · , id)

We can note that 〈A,A〉 = ||A||2.
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Specific tensors

A rank one tensor A ∈ Rn1×n2×···×nd can be written as the outer
product of d vectors,

A = u1 ◦ u2 ◦ · · · ◦ ud

A(i1, i2, · · · , id) = u1(i1)u2(i2) · · · ud(id) for all 1 ≤ ik ≤ nk

A cubical tensor A ∈ Rn1×n2×···×nd has same size in every mode,

n1 = n2 = · · · = nd

A supersymmetric (or symmetric) tensor has the same element for
any permutation of the indices

A diagonal tensor A ∈ Rn1×n2×···×nd has A(i1, i2, · · · , id) 6= 0 only if
i1 = i2 = · · · = id
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Matricization or Unfolding of a tensor into a matrix

The mode-j unfolding of A ∈ Rn1×n2×···×nd is represented by a matrix
A(j) ∈ Rnj×n, where n = n1n2 · · · nj−1nj+1 · · · nd
Tensor element A(i1, i2, · · · , id) maps to matrix element A(j)(ij , k), where

k = 1 +
∑d
`=1, 6̀=j(i` − 1)N` with N` =

∏`−1
m=1,m 6=j nm

Example with the frontal slices of A ∈ R4×2×3:

A(:, :, 1) =


1 5
2 6
3 7
4 8

 , A(:, :, 2) =


9 13

10 14
11 15
12 16

 , A(:, :, 3) =


17 21
18 22
19 23
20 24


The three mode-j unfoldings are:

A(1) =


1 5 9 13 17 21
2 6 10 14 18 22
3 7 11 15 19 23
4 8 12 16 20 24

 , A(3) =

 1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

 ,

A(2) =

(
1 2 3 4 9 10 11 12 17 18 19 20
5 6 7 8 13 14 15 16 21 22 23 24

)
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Assignment 3 – deadline Oct 10

Question: Write a program in your preferred programming language to
obtain mode-3 unfolding of A ∈ R3×3×3. Elements of A are defined in the
following way:

A(i , j , k) = i + j2 + k3 for 1 ≤ i , j , k ≤ 3.

If your preferred language supports 0-based indexing then you can consider
0 ≤ i , j , k ≤ 2.

Submission procedure: Send your code to my ENS email address
(suraj.kumar@ens-lyon.fr) by Oct 10.
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Tensor multiplication (contraction) along j-mode with a matrix

The j-mode product of A ∈ Rn1×n2×···×nd with U ∈ RK×nj is denoted by A×j U
and is of size n1 × · · · nj−1 × K × nj+1 × · · · × nd .

(A×j U)(i1, · · · , ij−1, k , ij+1, · · · id) =

nj∑
ij=1

A(i1, · · · , id)U(k, ij)

This is also known as tensor-times-matrix (TTM) operation in the jth mode.

In terms of unfolded tensors:

B = A×j U ⇔ B(j) = UA(j)

Some properties of j-mode products:

A×j U ×k V = A×k V ×j U (j 6= k)

A×j U ×j V = A×j VU
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Matrix products

The Kronecker product of A ∈ Rm×n and B ∈ Rp×q is C ∈ Rmp×nq,

C = A⊗ B =

A(1, 1)B · · · A(1, n)B
...

. . .
...

A(m, 1)B · · · A(m, n)B


The Khatri-Rao product of A ∈ Rm×n and B ∈ Rp×n is C ∈ Rmp×n,

C = A� B =
(
A(:, 1)⊗ B(:, 1) A(:, 2)⊗ B(:, 2) · · · A(:, n)⊗ B(:, n)

)
The Hadamard product of A ∈ Rm×n and B ∈ Rm×n is C ∈ Rm×n,

C = A ∗ B =

 A(1, 1)B(1, 1) · · · A(1, n)B(1, n)
...

. . .
...

A(m, 1)B(m, 1) · · · A(m, n)B(m, n)


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Useful properties of matrix products

(A⊗ B)(C ⊗ D) = AC ⊗ BD,

A� B � C = (A� B)� C = A� (B � C )

(A� B)T (A� B) = ATA ∗ BTB,

(A� B)† = ((ATA) ∗ (BTB))†(A� B)T .

Here A† denotes the Moore–Penrose pseudoinverse of A.

Let A ∈ Rn1×n2×···×nd and Uj ∈ Rmj×nj for 1 ≤ j ≤ d . Then,

B = A×1 U1 ×2 U2 · · · ×d Ud

⇔ B(j) = UjA(j)(Ud ⊗ · · ·Uj+1 ⊗ Uj−1 ⊗ · · · ⊗ U1)T .
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Recap on Singular Value Decomposition (SVD)

It decomposes a matrix A ∈ Rm×n to the form UΣV T

U is an m ×m orthogonal matrix
V is an n × n orthogonal matrix
Σ is an m × n rectangular diagonal matrix

The diagonal entries σi = Σii of Σ are called singular values

σi ≥ 0 and σ1 ≥ σ2 ≥ · · · ≥ σmin(m,n)

The largest r such that σr 6= 0 is called the rank of the matrix

SVD represents a matrix as the sum of r rank one matrices

= + + · · · +
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Tensor decompositions

Popular higher-order extension of the matrix SVD:

CANDECOMP/PARAFAC (CP): proposed by Hitchcock in 1927

Tucker decomposition: proposed by Tucker in 1963

Tensor train decomposition: proposed by Oseledets in 2011, known in
quantum chemistry community from a long time with the name of matrix
product states

CP and Tucker decompositions are well suited to work with small and moderate
dimension tensors (d ≤ 10). Tensor train is preferred for high dimension tensors.
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CP decomposition of A ∈ Rn1×n2×···×nd

It factorizes a tensor into a sum of rank one tensors.

= + + · · · +

CP decomposition of a 3-dimensional tensor.

A =
r∑

α=1

U1(:, α) ◦ U2(:, α) ◦ · · · ◦ Ud(:, α)

A(i1, · · · , id) =
r∑

α=1

U1(i1, α)U2(i2, α) · · ·Ud(id , α)

The minimum r required to express A is called the rank of A. The matrices
Uj ∈ Rnj×r for 1 ≤ j ≤ d are called factor matrices.

(+) The number of entries in a CP decomposition of A = O((n1 + · · ·+ nd)r)

(-) Determining the minimum value of r is an NP-complete problem

(-) No robust algorithms to compute this representation

Suraj Kumar (Inria & ENS Lyon) Tensors CR12 15 / 18



Tucker decomposition of A ∈ Rn1×n2×···×nd

It represents a tensor with d matrices (usually orthogonal) and a small core tensor.

=

Tucker decomposition of a 3-dimensional tensor.

A = G×1 U1 · · · ×d Ud

A(i1, · · · , id) =

r1∑
α1=1

· · ·
rd∑

αd=1

G(α1, · · · , αd)U1(i1, α1) · · ·Ud(id , αd)

Here rj for 1 ≤ j ≤ d denote a set of ranks. Matrices Uj ∈ Rnj×rj for 1 ≤ j ≤ d
are called factor matrices. The tensor G ∈ Rr1×r2×···×rd is called the core tensor.

(+) SVD based stable algorithms to compute this decomposition

(-) The number of entries = O(n1r1 + · · ·+ nd rd +
∏d

j=1 rj)
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Tensor Train (TT) decomposition: Product of matrices view

A d-dimensional tensor is represented with 2 matrices and d-2 3-dimensional
tensors.

G1 G2 Gd

n1

r1

n2

r1
r2 rd−1

nd

G2(i2)G1(i1) Gd(id)

G1(i1)G2(i2) · · ·Gd(id)

· · · · · · · · ·
i2

i1

id

· · · · · · · · ·

A(i1, i2, · · · , id) =

An entry of A ∈ Rn1×···×nd is computed by multiplying corresponding matrix (or
row/column) of each matrix/tensor.
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Tensor Train decomposition

A ∈ Rn1×···×nd is represented with cores Gk∈ Rrk−1×nk×rk , k=1, 2, · · · d ,
r0=rd=1 and its elements satisfy the following expression:

A(i1, · · · , id) =
r0∑

α0=1

· · ·
rd∑

αd=1

G1(α0, i1, α1) · · ·Gd(αd−1, id , αd)

=
r1∑

α1=1

· · ·
rd−1∑

αd−1=1

G1(1, i1, α1) · · ·Gd(αd−1, id , 1)

i1α1 α1 α1i2α2 α2 αd-1 αd-1id

The ranks rk are called TT-ranks.

The number of entries in this decomposition =
O(n1r1 + n2r1r2 + n3r2r3 + · · ·+ nd−1rd−2rd−1 + nd rd−1)
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