Introduction to Tensors

Suraj Kumar

Inria & ENS Lyon Email:suraj.kumar@ens-lyon.fr

CR12: October 2024 https://surakuma.github.io/courses/daamtc.html

4 **D F**

- Neuroscience: measure of calcium fluorescence in a particular pixel during a time step of a single trial (Pixel \times Time \times Trial)
- **Combustion simulation**: value of a variable in a spatial grid during a time step (Grid length \times Grid width \times Grid height \times Variable \times Time)
- Media: rating of a movie by a user during a time slice (User \times Movie \times Time)
- Molecular/quantum simulations: interaction of electrons in d orbitals with a 4 d tensor

Notation convention: Matrix A, tensor A

4 D F

1 [Tensor notations and some definitions](#page-2-0)

[Tensor decompositions](#page-11-0)

4 ロ ▶ 4 何

э → < 3H 299

Tensor notations (following [Kolda and Bader, 2009])

Let A be a d-dimensional tensor of size $n_1 \times n_2 \times \cdots \times n_d$, $A \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}$.

- \bullet $d = 1$. first order tensors: vectors
- \bullet $d = 2$, second order tensors: matrices

The element of A is denoted as $\mathcal{A}(i_1, i_2, \ldots, i_d)$.

• Fibers: defined by fixing all indices except one

Mode-1 (column) fibers: $A(:, j, k)$, Mode-2 (row) fibers: $A(i, :, k)$ and Mode-3 (tube) fibers: $A(i, j, :)$ of a 3-dimensional tensor A.

Figures from [Kolda and Bader, 2009].

• Slices: defined by fixing all indices except two

Horizontal slices: $A(i, :, :)$, Lateral slices: $A(:, i,:)$ and Frontal slices: $A(:, :, k)$ of a 3-dimensional tensor A.

(□) (_□

化磨光化磨光

Tensor preliminaries

The norm of a tensor $\mathcal{A} \in \mathbb{R}^{n_1 \times n_2 \times \dots \times n_d}$ is analogous to the matrix Frobenius norm, and defined as

$$
||\mathcal{A}|| = \sqrt{\sum_{i_1=1}^{n_1} \sum_{i_2=1}^{n_2} \cdots \sum_{i_d=1}^{n_d} \mathcal{A}^2(i_1, i_2, \cdots, i_d)}
$$

The inner product of $\mathcal{A}, \mathcal{B} \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}$ is

$$
\langle \boldsymbol{\mathcal{A}},\boldsymbol{\mathcal{B}}\rangle=\sum_{i_1=1}^{n_1}\sum_{i_2=1}^{n_2}\cdots\sum_{i_d=1}^{n_d}\boldsymbol{\mathcal{A}}(i_1,i_2,\cdots,i_d)\boldsymbol{\mathcal{B}}(i_1,i_2,\cdots,i_d)
$$

We can note that $\langle \mathcal{A}, \mathcal{A} \rangle = ||\mathcal{A}||^2$.

4 0 8

Specific tensors

A rank one tensor $\mathcal{A} \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}$ can be written as the outer product of d vectors,

 $A = u_1 \circ u_2 \circ \cdots \circ u_d$

$$
\mathcal{A}(i_1,i_2,\cdots,i_d)=u_1(i_1)u_2(i_2)\cdots u_d(i_d) \text{ for all } 1\leq i_k\leq n_k
$$

A cubical tensor $\mathcal{A} \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}$ has same size in every mode,

$$
n_1=n_2=\cdots=n_d
$$

- A supersymmetric (or symmetric) tensor has the same element for any permutation of the indices
- A diagonal tensor $\mathcal{A}\in\mathbb{R}^{n_1\times n_2\times\cdots\times n_d}$ has $\mathcal{A}(i_1,i_2,\cdots,i_d)\neq 0$ only if $i_1 = i_2 = \cdots = i_d$

Matricization or Unfolding of a tensor into a matrix

- The mode-j unfolding of $\mathcal{A} \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}$ is represented by a matrix $A_{(j)} \in \mathbb{R}^{n_j \times n}$, where $n = n_1 n_2 \cdots n_{j-1} n_{j+1} \cdots n_d$
- Tensor element $\mathcal{A}(i_1,i_2,\cdots,i_d)$ maps to matrix element $A_{(j)}(i_j,k)$, where $k=1+\sum_{\ell=1,\ell\neq j}^d (i_\ell-1)N_\ell$ with $N_\ell=\prod_{m=1,m\neq j}^{\ell-1} n_m$

Example with the frontal slices of $\mathcal{A} \in \mathbb{R}^{4 \times 2 \times 3}$:

$$
\mathcal{A}(:,:,1)=\begin{pmatrix}1&5\\2&6\\3&7\\4&8\end{pmatrix},\ \mathcal{A}(:,:,2)=\begin{pmatrix}9&13\\10&14\\11&15\\12&16\end{pmatrix},\ \mathcal{A}(:,:,3)=\begin{pmatrix}17&21\\18&22\\19&23\\20&24\end{pmatrix}
$$

The three mode- i unfoldings are:

$$
A_{(1)} = \begin{pmatrix} 1 & 5 & 9 & 13 & 17 & 21 \\ 2 & 6 & 10 & 14 & 18 & 22 \\ 3 & 7 & 11 & 15 & 19 & 23 \\ 4 & 8 & 12 & 16 & 20 & 24 \end{pmatrix}, A_{(3)} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\ 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 \end{pmatrix},
$$

$$
A_{(2)} = \begin{pmatrix} 1 & 2 & 3 & 4 & 9 & 10 & 11 & 12 & 17 & 18 & 19 & 20 \\ 5 & 6 & 7 & 8 & 13 & 14 & 15 & 16 & 21 & 22 & 23 & 24 \end{pmatrix}
$$

Question: Write a program in your preferred programming language to obtain mode-3 unfolding of $\mathcal{A} \in \mathbb{R}^{3 \times 3 \times 3}$. Elements of $\mathcal A$ are defined in the following way:

$$
\mathcal{A}(i,j,k) = i + j^2 + k^3 \text{ for } 1 \le i,j,k \le 3.
$$

If your preferred language supports 0-based indexing then you can consider $0 < i, i, k < 2.$

Submission procedure: Send your code to my ENS email address [\(suraj.kumar@ens-lyon.fr\)](mailto:suraj.kumar@ens-lyon.fr) by Oct 10.

 Ω

≮ロト ⊀母 ト ≮ ヨ ト ⊀ ヨ ト

Tensor multiplication (contraction) along j-mode with a matrix

The j-mode product of $\mathcal{A} \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}$ with $U \in \mathbb{R}^{K \times n_j}$ is denoted by $\mathcal{A} \times_j U$ and is of size $n_1 \times \cdots n_{i-1} \times K \times n_{i+1} \times \cdots \times n_d$.

$$
(\mathcal{A} \times_j U)(i_1,\cdots,i_{j-1},k,i_{j+1},\cdots,i_d) = \sum_{i_j=1}^{n_j} \mathcal{A}(i_1,\cdots,i_d)U(k,i_j)
$$

This is also known as tensor-times-matrix (TTM) operation in the jth mode. In terms of unfolded tensors:

$$
\mathcal{B} = \mathcal{A} \times_j U \Leftrightarrow B_{(j)} = U A_{(j)}
$$

Some properties of j-mode products:

$$
\bullet \ \mathcal{A} \times_j U \times_k V = \mathcal{A} \times_k V \times_j U \quad (j \neq k)
$$

$$
\bullet \ \mathcal{A} \times_j U \times_j V = \mathcal{A} \times_j VU
$$

Matrix products

The Kronecker product of $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{p \times q}$ is $C \in \mathbb{R}^{mp \times nq}$,

$$
C = A \otimes B = \begin{pmatrix} A(1,1)B & \cdots & A(1,n)B \\ \vdots & \ddots & \vdots \\ A(m,1)B & \cdots & A(m,n)B \end{pmatrix}
$$

The Khatri-Rao product of $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{p \times n}$ is $C \in \mathbb{R}^{mp \times n}$,

 $C = A \odot B = (A(:,1) \otimes B(:,1) \ A(:,2) \otimes B(:,2) \ \cdots \ A(:,n) \otimes B(:,n))$

The Hadamard product of $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{m \times n}$ is $C \in \mathbb{R}^{m \times n}$,

$$
C = A * B = \begin{pmatrix} A(1,1)B(1,1) & \cdots & A(1,n)B(1,n) \\ \vdots & \ddots & \vdots \\ A(m,1)B(m,1) & \cdots & A(m,n)B(m,n) \end{pmatrix}
$$

 QQQ

$$
(A \otimes B)(C \otimes D) = AC \otimes BD,
$$

\n
$$
A \odot B \odot C = (A \odot B) \odot C = A \odot (B \odot C)
$$

\n
$$
(A \odot B)^{T}(A \odot B) = A^{T}A * B^{T}B,
$$

\n
$$
(A \odot B)^{\dagger} = ((A^{T}A) * (B^{T}B))^{\dagger}(A \odot B)^{T}.
$$

Here A^\dagger denotes the Moore–Penrose pseudoinverse of A .

Let $\mathcal{A}\in\mathbb{R}^{n_1\times n_2\times\cdots\times n_d}$ and $U_j\in\mathbb{R}^{m_j\times n_j}$ for $1\leq j\leq d$. Then, $\mathcal{B} = \mathcal{A} \times_1 U_1 \times_2 U_2 \cdots \times_d U_d$ $\Leftrightarrow B_{(j)}=U_jA_{(j)}(U_d\otimes\cdots U_{j+1}\otimes U_{j-1}\otimes\cdots\otimes U_1)^T.$

 Ω

メロメメ 倒 メメ きょく ヨメ 一番

2 [Tensor decompositions](#page-11-0)

4 **D F**

э \rightarrow \rightarrow 299

Recap on Singular Value Decomposition (SVD)

- It decomposes a matrix $A \in \mathbb{R}^{m \times n}$ to the form $U\Sigma V^T$
	- \bullet U is an $m \times m$ orthogonal matrix
	- V is an $n \times n$ orthogonal matrix
	- \bullet Σ is an $m \times n$ rectangular diagonal matrix
- **•** The diagonal entries $\sigma_i = \sum_{i}$ of Σ are called singular values
	- $\sigma_i \geq 0$ and $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_{\min(m,n)}$
- The largest r such that $\sigma_r \neq 0$ is called the rank of the matrix
- \bullet SVD represents a matrix as the sum of r rank one matrices

Popular higher-order extension of the matrix SVD:

- CANDECOMP/PARAFAC (CP): proposed by Hitchcock in 1927
- Tucker decomposition: proposed by Tucker in 1963
- Tensor train decomposition: proposed by Oseledets in 2011, known in quantum chemistry community from a long time with the name of matrix product states

CP and Tucker decompositions are well suited to work with small and moderate dimension tensors $(d \leq 10)$. Tensor train is preferred for high dimension tensors.

CP decomposition of $A \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}$

It factorizes a tensor into a sum of rank one tensors.

CP decomposition of a 3-dimensional tensor.

$$
\mathcal{A} = \sum_{\alpha=1}^r U_1(:,\alpha) \circ U_2(:,\alpha) \circ \cdots \circ U_d(:,\alpha)
$$

$$
\mathcal{A}(i_1, \cdots, i_d) = \sum_{\alpha=1}^r U_1(i_1, \alpha) U_2(i_2, \alpha) \cdots U_d(i_d, \alpha)
$$

The minimum r required to express $\mathcal A$ is called the rank of $\mathcal A$. The matrices $U_j \in \mathbb{R}^{n_j \times r}$ for $1 \leq j \leq d$ are called factor matrices.

- \bullet (+) The number of entries in a CP decomposition of $A = \mathcal{O}((n_1 + \cdots + n_d)r)$
- \bullet (-) Determining the minimum value of r is an NP-complete problem
- (-) No robust algorithms to compute this repres[en](#page-13-0)t[at](#page-15-0)[io](#page-13-0)[n](#page-14-0)

 QQ

Tucker decomposition of $\mathcal{A} \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}$

It represents a tensor with d matrices (usually orthogonal) and a small core tensor.

Tucker decomposition of a 3-dimensional tensor.

$$
\mathcal{A} = \mathcal{G} \times_1 U_1 \cdots \times_d U_d
$$

$$
\mathcal{A}(i_1, \cdots, i_d) = \sum_{\alpha_1=1}^{r_1} \cdots \sum_{\alpha_d=1}^{r_d} \mathcal{G}(\alpha_1, \cdots, \alpha_d) U_1(i_1, \alpha_1) \cdots U_d(i_d, \alpha_d)
$$

Here r_j for $1 \le j \le d$ denote a set of ranks. Matrices $U_j \in \mathbb{R}^{n_j \times r_j}$ for $1 \le j \le d$ are called factor matrices. The tensor $\mathcal{G} \in \mathbb{R}^{r_1 \times r_2 \times \cdots \times r_d}$ is called the core tensor.

- \bullet (+) SVD based stable algorithms to compute this decomposition
- (-) The number of entries $=\mathcal{O}(n_1r_1+\cdots+n_dr_d+\prod_{j=1}^d r_j)$ $=\mathcal{O}(n_1r_1+\cdots+n_dr_d+\prod_{j=1}^d r_j)$ $=\mathcal{O}(n_1r_1+\cdots+n_dr_d+\prod_{j=1}^d r_j)$ $=\mathcal{O}(n_1r_1+\cdots+n_dr_d+\prod_{j=1}^d r_j)$

 QQQ

(ロト (個) (ミト (重)

Tensor Train (TT) decomposition: Product of matrices view

 \bullet A d-dimensional tensor is represented with 2 matrices and d -2 3-dimensional tensors.

 $\mathbf{A}(i_1, i_2, \cdots, i_d) = \mathbf{G}_1(i_1) \mathbf{G}_2(i_2) \cdots \mathbf{G}_d(i_d)$

An entry of $\mathcal{A} \in \mathbb{R}^{n_1 \times \cdots \times n_d}$ is computed by multiplying corresponding matrix (or row/column) of each matrix/tensor.

Suraj Kumar (Inria & ENS Lyon) [Tensors](#page-0-0) CR12 17 / 18

4 0 F

 $2Q$

 $A \in \mathbb{R}^{n_1 \times \cdots \times n_d}$ is represented with cores $\mathcal{G}_k \in \mathbb{R}^{r_{k-1} \times n_k \times r_k}$, $k=1,2,\cdots d$, $r_0 = r_d = 1$ and its elements satisfy the following expression:

$$
\mathcal{A}(i_1,\dots,i_d) = \sum_{\alpha_0=1}^{r_0} \dots \sum_{\alpha_d=1}^{r_d} \mathcal{G}_1(\alpha_0,i_1,\alpha_1)\dots\mathcal{G}_d(\alpha_{d-1},i_d,\alpha_d)
$$

$$
= \sum_{\alpha_1=1}^{r_1} \dots \sum_{\alpha_{d-1}=1}^{r_{d-1}} \mathcal{G}_1(1,i_1,\alpha_1)\dots\mathcal{G}_d(\alpha_{d-1},i_d,1)
$$

The ranks r_k are called TT-ranks.

 \bullet The number of entries in this decomposition $=$ $\mathcal{O}(n_1r_1 + n_2r_1r_2 + n_3r_2r_3 + \cdots + n_{d-1}r_{d-2}r_{d-1} + n_d r_{d-1})$