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Properties of matrix Frobenius norm for real matrices

||A||2F =
∑
i,j

A2(i , j) = Trace(AAT ) = Trace(ATA)

||A + B||2F = ||A||2F + ||B||2F + 2〈A,B〉F
Here 〈A,B〉F is known as Frobenius inner product and defined as
〈A,B〉F = Trace(ATB) = Trace(BTA).

If Q is an orthonormal matrix then,

||A||2F = ||QQTA||2F + ||(I − QQT )A||2F ,

||QC ||F = ||C ||F ,

||QTA||F = ||QQTA||F ≤ ||A||F ,

〈A− QQTA,QQTA〉F = 0.
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Tensor norm

The norm of a tensor A ∈ Rn1×n2×···×nd is analogous to the matrix
Frobenius norm, and defined as

||A||F =

√√√√ n1∑
i1=1

n2∑
i2=1

· · ·
nd∑

id=1

A2(i1, i2, · · · , id)

We will only focus on Frobenius norm in this course.
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Singular Value Decomposition (SVD)

It decomposes a matrix A ∈ Rm×n to the form UΣV T

U is an m ×m orthogonal matrix
V is an n × n orthogonal matrix
Σ is an m × n rectangular diagonal matrix

The diagonal entries σi = Σii of Σ are called singular values

σi ≥ 0 and σ1 ≥ σ2 ≥ · · · ≥ σmin(m,n)

The largest r such that σr 6= 0 is called the rank of the matrix

SVD represents a matrix as the sum of r rank one matrices

= + + · · · +
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Low rank approximations of matrices using SVD

SVD decomposition: A = UΣV T

Let ui and vi be the column vectors of U and V , respectively.

r ′-rank approximation

If Ã =
∑r ′

i=1 σiuiv
T
i , then Ã is an r ′-rank approximation of A.

||A− Ã||2F =

min(m,n)∑
i=r ′+1

σ2
i

SVD gives the best r ′-rank approximation of any matrix.

Approximation for ε accuracy

We select minimum r ′ such that
∑min(m,n)

i=r ′+1 σ2
i ≤ ε2. The approximation is

Ã =
∑r ′

i=1 σiuiv
T
i .

||A− Ã||2F =

min(m,n)∑
i=r ′+1

σ2
i ≤ ε2
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Properties of SVD

The SVD of A ∈ Rm×n can be written as A = UΣV T . Here U ∈ Rm×m and
V ∈ Rn×n are orthogonal matrices and Σ ∈ Rm×n is a rectangular diagonal
matrix.

Columns of U are also eigen vectors of AAT

Similarly, columns of V are eigen vectors of ATA

If σi > 0 is a singular value of A then σ2
i is an eigen value of AAT and ATA

ΣΣT and ΣTΣ are diagonal matrices. Their diagonal entries are the eigen values
of AAT and ATA, respectively.

We can also express SVD as

A =
(
U1 U2

)(Σ1 0
0 Σ2

)(
V1V2

)T
= U1Σ1V

T
1 + U2Σ2V

T
2 .

This is equivalent to

A = U1U
T
1 A + U2U

T
2 A = AV1V

T
1 + AV2V

T
2 .
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CP decomposition of A ∈ Rn1×n2×···×nd

It factorizes a tensor into a sum of rank one tensors.

= + + · · · +

CP decomposition of a 3-dimensional tensor.

A =
r∑

α=1

U1(:, α) ◦ U2(:, α) ◦ · · · ◦ Ud(:, α)

It can be concisely expressed as A = JU1,U2, · · · ,UdK. CP decomposition for a
3-dimensional tensor in matricized form can be written as:

A(1) = U1(U3 � U2)T , A(2) = U2(U3 � U1)T A(3) = U3(U2 � U1)T .

It is useful to assume that U1,U2 · · ·Ud are normalized to length one with the
weights given in a vector λ ∈ Rr .

A = Jλ;U1,U2, · · · ,UdK =
r∑

α=1

λαU1(:, α) ◦ U2(:, α) ◦ · · · ◦ Ud(:, α)
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Tensor rank

A =
r∑

α=1

λαU1(:, α) ◦ U2(:, α) ◦ · · · ◦ Ud(:, α)

The minimum r required to express A is called the rank of A

The rank of a real-valued tensor may be different over R and C. For example,
consider the frontal slices of A ∈ R2×2×2

A(:, :, 1) =

(
1 0
0 1

)
and A(:, :, 2) =

(
0 1
−1 0

)
.

This has rank three over R and two over C. The CP decomposition over R has
the following factor matrices:

U1 =

(
1 0 1
0 1 −1

)
,U2 =

(
1 0 1
0 1 1

)
, and U3 =

(
1 1 0
−1 1 1

)
.

The CP decomposition over C has the following factor matrices:

U1 =
1√
2

(
1 1
−i i

)
,U2 =

1√
2

(
1 1
i −i

)
, and U3 =

(
1 1
i −i

)
.
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Rank and low-rank approximations

Determining the rank of a tensor is an NP-complete problem

If A =
∑r

α=1 λαU1(:, α) ◦ U2(:, α) ◦ · · · ◦ Ud(:, α), summing k < r
terms may not yield a best rank-k approximation

Possible that the best rank-k approximation of a tensor may not exist
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CP decomposition: example

Let A ∈ R2×4×3 and A = JU1,U2,U3K. The rank of A is 2.

U1 =

(
1 3
2 4

)
, U2 =


1 4
2 5
4 6
3 7

 , U3 =

1 4
2 5
3 6



Computation of A(2, 3, 1),

A(2, 3, 1) =
2∑

α=1

U1(2, α)U2(3, α)U3(1, α)

=2 · 4 · 1 + 4 · 6 · 4 = 104

A has total 24 elements, while the CP representation has 18 elements.
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CP optimization problem for a 3-dimensional tensor

≈ + + · · · +

For fixed rank k , we want to solve

min
U1,U2U3

||A−
k∑

α=1

λαU1(:, α) ◦ U2(:, α) ◦ U3(:, α)||F .

It is a nonlinear, nonconvex optimization problem

In the matrix case, the SVD provides us the optimal solution

In the tensor case, convergence to optimum not guaranteed
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Alternating Least Squares (ALS) method

Fixing all but one factor matrix, we have a linear least squares problem:

min
Û1

||A−
k∑

α=1

Û1(:, α) ◦ U2(:, α) ◦ U3(:, α)||F

or equivalently
min
Û1

||A(1) − Û1(U3 � U2)T ||F

ALS works by alternating over factor matrices, updating one at a time.
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CP-ALS algorithm

Repeat until maximum iterations reached or no further improvement obtained

1 Solve U1(U3 � U2)T = A(1) for U1 ⇒ U1 = A(1)(U3 � U2)(UT
3 U3 ∗ UT

2 U2)†

2 Normalize columns of U1

3 Solve U2(U3 � U1)T = A(2) for U2 ⇒ U2 = A(2)(U3 � U1)(UT
3 U3 ∗ UT

1 U1)†

4 Normalize columns of U2

5 Solve U3(U2 � U1)T = A(3) for U3 ⇒ U3 = A(3)(U2 � U1)(UT
2 U2 ∗ UT

1 U1)†

6 Normalize columns of U3

Here A† denotes the Moore–Penrose pseudoinverse of A. We use the following
identity to get expressions for U1,U2 and U3:

(A� B)T (A� B) = ATA ∗ BTB
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ALS for computing a CP decomposition

Algorithm 1 CP-ALS method to compute CP decomposition

Require: input tensor A ∈ Rn1×···×nd , desired rank k , initial factor matrices
Uj ∈ Rnj×k for 1 ≤ j ≤ d

Ensure: Jλ;U1, · · · ,UdK : a rank-k CP decomposition of A
repeat

for i = 1 to d do
V ← UT

1 U1 ∗ · · · ∗ UT
i−1Ui−1U

T
i+1Ui+1 ∗ · · · ∗ UT

d Ud

Ui ← A(i)(Ud � · · · � Ui+1 � Ui−1 � U1)

Ui ← UiV
†

λ← normalize colums of Ui

end for
until converge or the maximum number of iterations

The collective operation A(i)(Ud � · · · � Ui+1 � Ui−1 � U1) is known as
Matricized tensor times Khatri-Rao product (MTTKRP) computation

Uj can be chosen randomly or by setting k left singular vectors of A(j) for
1 ≤ j ≤ d
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Tucker decomposition of A ∈ Rn1×n2×···×nd

It represents a tensor with d matrices (usually orthonormal) and a small core
tensor.

=

Tucker decomposition of a 3-dimensional tensor.

A = G×1 U1 · · · ×d Ud

A(i1, · · · , id) =
r1∑

α1=1

· · ·
rd∑

αd=1

G(α1, · · · , αd)U1(i1, α1) · · ·Ud(id , αd)

It can be concisely expressed as A = JG;U1, · · · ,UdK.

Here rj for 1 ≤ j ≤ d denote a set of ranks. Matrices Uj ∈ Rnj×rj for 1 ≤ j ≤ d are
usually orthonormal and known as factor matrices. The tensor G ∈ Rr1×r2×···×rd is
called the core tensor.
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Tucker decomposition: an example

Let A ∈ R3×3×3, G ∈ R2×2×2 and A = JG;U1,U2,U3K.

U1 =
1

3

2 −2
1 2
2 1

 , U2 =

1 0
0 1
0 0

 , U3 =
1

5

0 4
3 3
4 0


G(:, :, 1) =

(
1 4
2 5

)
, G(:, :, 2) =

(
7 10
8 11

)

A(3, 2, 1) =
2∑

α1=1

2∑
α2=1

2∑
α3=1

G(α1, α2, α3)U1(3, α1)U2(2, α2)U3(1, α3)

=G(1, 1, 1)U1(3, 1)U2(2, 1)U3(1, 1) + G(1, 1, 2)U1(3, 1)U2(2, 1)U3(1, 2)

+ G(1, 2, 1)U1(3, 1)U2(2, 2)U3(1, 1) + G(1, 2, 2)U1(3, 1)U2(2, 2)U3(1, 2)

+ G(2, 1, 1)U1(3, 2)U2(2, 1)U3(1, 1) + G(2, 1, 2)U1(3, 2)U2(2, 1)U3(1, 2)

+ G(2, 2, 1)U1(3, 2)U2(2, 2)U3(1, 1) + G(2, 2, 2)U1(3, 2)U2(2, 2)U3(1, 2)

=1 · 2
3
· 0 · 0 + 7 · 2

3
· 0 · 4

5
+ 4 · 2

3
· 1 · 0 + 10 · 2

3
· 1 · 4

5

+ 2 · 1
3
· 0 · 0 + 8 · 1

3
· 0 · 4

5
+ 5 · 1

3
· 1 · 0 + 11 · 1

3
· 1 · 4

5
=

124

15
.
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High Order SVD (HOSVD) for computing a Tucker decomposition

Algorithm 2 HOSVD method to compute a Tucker decomposition

Require: input tensor A ∈ Rn1×···×nd , desired rank (r1, · · · , rd)
Ensure: A = G×1 U1 ×2 U2 · · · ×d Ud

for k = 1 to d do
Uk ← rk leading left singular vectors of A(k)

end for
G = A×1 U

T
1 ×2 U

T
2 · · · ×d UT

d

When ri < rank(A(i)) for one or more i , the decomposition is called the
truncated-HOSVD (T-HOSVD)

Output of T-HOSVD can be used as a starting point for an ALS algorithm

The collective operation A×1 U
T
1 ×2 U

T
2 · · · ×d UT

d is known as Multiple
Tensor-Times-Matrix (Multi-TTM) computation
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Quasi-optimality of T-HOSVD

Let Ã = G×1 U1 ×2 U2 · · · ×d Ud be the tensor obtained from T-HOSVD.

||A− Ã||2F =||A− G×1 U1 ×2 U2 · · · ×d Ud ||2F = ||A−A×1 U1U
T
1 · · · ×d UdU

T
d ||2F

=||A−A×1 U1U
T
1 +A×1 U1U

T
1 −A×1 U1U

T
1 · · · ×d UdU

T
d ||2F

=||A−A×1 U1U
T
1 ||2F + ||A×1 U1U

T
1 −A×1 U1U

T
1 · · · ×d UdU

T
d ||2F

=||A−A×1 U1U
T
1 ||2F + ||A×1 U1U

T
1 −A×1 U1U

T
1 ×2 U2U

T
2 ||2F + · · ·

· · ·+ ||A×1 U1U
T
1 · · · ×d−1 Ud−1U

T
d−1 −A×1 U1U

T
1 · · · ×d UdU

T
d ||2F

≤||A−A×1 U1U
T
1 ||2F + ||A−A×2 U2U

T
2 ||2F + · · ·+ ||A−A×d UdU

T
d ||2F

Theorem

Tensor Ã obtained from T-HOSVD satisfies quasi-optimality condition

||A− Ã||F ≤
√
d ||A−Abest ||F ,

where Abest is the best approximation of A with ranks (r1, · · · , rd).

Proof: ||A−A×i UiU
T
i ||F ≤ ||A−Abest ||F for 1 ≤ i ≤ d . Substituting these in

the previous result yields the specified inequality.
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Sequentially T-HOSVD (ST-HOSVD) for Tucker decomposition

This method is more work efficient than T-HOSVD

In each step, it reduces the size of one dimension of the tensor

Algorithm 3 ST-HOSVD method to compute a Tucker decomposition

Require: input tensor A ∈ Rn1×···×nd , desired rank (r1, · · · , rd)
Ensure: JG;U1, · · · ,UdK : a (r1, · · · , rd)-rank Tucker decomposition of A
B← A

for k = 1 to d do
Uk ← rk leading singular vectors of B(k)

B← B×k Uk
T

end for
G = B
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Quasi-optimality of ST-HOSVD

Let Ã = G×1 U1 ×2 U2 · · · ×d Ud be the tensor obtained from ST-HOSVD.

||A− Ã||2F =||A− G×1 U1 ×2 U2 · · · ×d Ud ||2F = ||A−A×1 U1U
T
1 · · · ×d UdU

T
d ||2F

=||A−A×1 U1U
T
1 ||2F + ||A×1 U1U

T
1 −A×1 U1U

T
1 ×2 U2U

T
2 ||2F + · · ·

· · ·+ ||A×1 U1U
T
1 · · · ×d−1 Ud−1U

T
d−1 −A×1 U1U

T
1 · · · ×d UdU

T
d ||2F

Theorem
Tensor Ã obtained from ST-HOSVD satisfies quasi-optimality condition

||A− Ã||F ≤
√
d ||A−Abest ||F ,

where Abest is the best approximation of A with ranks (r1, · · · , rd).

Proof: We know that ||A−A×i UiU
T
i ||F ≤ ||A−Abest ||F for 1 ≤ i ≤ d .

||A−A×1 U1U
T
1 ||F ≤ ||A−Abest ||F

||A×1 U1U
T
1 −A×1 U1U

T
1 ×2 U2U

T
2 ||F ≤ ||A−A×2 U2U

T
2 ||F ≤ ||A−Abest ||F

.

.

.

||A×1U1U
T
1 · · ·×d−1Ud−1U

T
d−1−A×1U1U

T
1 · · ·×dUdU

T
d ||F ≤ ||A−A×dUdU

T
d ||F ≤ ||A−Abest ||F

Summing the above terms yields the specified inequality.
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Tucker decomposition optimization problem for a 3-dimensional tensor

≈

For fixed ranks orthonormal matrices U1,U2,U3, we want to solve

min
U1,U2,U3

||A−G×1 U1×2 U2×3 U3||F , where G = A×1 U
T
1 ×2 U

T
2 ×3 U

T
3 .

This is equivalent to

max
U1,U2,U3

||A×1 U
T
1 ×2 U

T
2 ×3 U

T
3 ||F .

It is a nonlinear, nonconvex optimization problem.

||A− G×1 U1 ×2 U2 ×3 U3||2F =||A||2F + ||G×1 U1 ×2 U2 ×3 U3||2F
− 2〈A− G×1 U1 ×2 U2 ×3 U3〉

=||A||2F + ||G||2F − 2〈A×1 U
T
1 ×2 U

T
2 ×3 U

T
3 ,G〉

=||A||2F − ||G||2F
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Higher-order orthogonal iteration (HOOI) method

Fixing all but one factor matrix, we have a matrix problem:

max
Û1

||A×1 Û1
T ×2 U

T
2 ×3 U

T
3 ||F

HOOI works by alternating over factor matrices, updating one by
computing left singular vectors
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HOOI method for computing a Tucker decomposition

Algorithm 4 HOOI method to compute Tucker decomposition

Require: input tensor A ∈ Rn1×···×nd , desired ranks (r1, · · · , rd), initial
factor matrices Uj ∈ Rnj×rj for 1 ≤ j ≤ d

Ensure: JG;U1, · · · ,UdK : a (r1, · · · , rd)-rank Tucker decomposition of A
repeat

for i = 1 to d do
B← A×1 U

T
1 · · · ×i−1 U

T
i−1 ×i+1 U

T
i+1 · · · ×d UT

d

Ui ← ri left singular vectors of B(i)

end for
until converge or the maximum number of iterations
G← A×1 U

T
1 ×2 U

T
2 · · · ×d UT

d

Outputs of HOSVD (Uj for 1 ≤ j ≤ d) can be used as a starting point for
this method
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Tensor Train (TT) decomposition: Product of matrices view

A d-dimensional tensor is represented with 2 matrices and d-2 3-dimensional
tensors.

G1 G2 Gd

n1

r1

n2

r1
r2 rd−1

nd

G2(i2)G1(i1) Gd(id)

G1(i1)G2(i2) · · ·Gd(id)

· · · · · · · · ·
i2

i1

id

· · · · · · · · ·

A(i1, i2, · · · , id) =

An entry of A ∈ Rn1×···×nd is computed by multiplying corresponding matrix (or
row/column) of each matrix/tensor.
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Tensor Train decomposition

A ∈ Rn1×···×nd is represented with cores Gk∈ Rrk−1×nk×rk , k=1, 2, · · · d ,
r0=rd=1 and its elements satisfy the following expression:

A(i1, · · · , id) =
r0∑

α0=1

· · ·
rd∑

αd=1

G1(α0, i1, α1) · · ·Gd(αd−1, id , αd)

=
r1∑

α1=1

· · ·
rd−1∑

αd−1=1

G1(1, i1, α1) · · ·Gd(αd−1, id , 1)

i1α1 α1 α1i2α2 α2 αd-1 αd-1id

The ranks rk are called TT-ranks.

The number of entries in this decomposition =
O(n1r1 + n2r1r2 + n3r2r3 + · · ·+ nd−1rd−2rd−1 + nd rd−1)
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TT-decomposition: an example

Let A ∈ R3×4×5. G1 ∈ R3×2,G2 ∈ R2×4×2, and G3 ∈ R2×5 are the cores of a
TT-decomposition.

G1 =

1 1
2 1
3 1

 , G3 =

(
1 2 3 4 5
1 1 1 1 1

)
,

G2(:, 1, :) =

(
1 1
2 1

)
,G2(:, 2, :) =

(
1 1
3 1

)
,G2(:, 3, :) =

(
1 1
4 1

)
,G2(:, 4, :) =

(
1 1
5 1

)

Computation of A(2, 3, 4),

A(2, 3, 4) =G1(2, :)G2(:, 3, :)G3(:, 4)

=
(
2 1

)(1 1
4 1

)(
4
1

)
= 27
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Another representation of unfolding matrices of a tensor

Ak denotes k-th unfolding matrix of tensor A ∈ Rn1×···×nd .

Ak = [Ak(i1, i2, · · · , ik ; ik+1, · · · , id)]

Size of Ak is (
∏k
`=1 n`)× (

∏d
`=k+1 n`)
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TT-SVD algorithm for TT approximation [Oseledets, 2011]

Algorithm 5 TT-SVD algorithm

Require: d-dimensional tensor A ∈ Rn1×···×nd and desired ranks (r0 = 1,
r1, r2, · · · rd−1, rd = 1)

Ensure: Cores Gk ∈ Rrk−1×nk×rk for 1 ≤ k ≤ d of a TT representation
1: Temporary tensor: C = A

2: for k = 1 : d − 1 do
3: Ak = reshape(C, rk−1nk ,

numel(C)
rk−1nk

)

4: Compute SVD: Ak = UΣV T

5: New core: Gk := reshape(U(; 1 : rk), rk−1, nk , rk)
6: C = Σ(1 : rk ; 1 : rk)V T (1 : rk ; )
7: end for
8: Gd = C

9: return G1, · · · ,Gd

• reshape(A,m1, · · · ,m`): rearranges array A into a m1 × · · · ×m` array
• numel(A): number of elements of array A
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Error with TT-SVD approximation

Suppose the unfolding matrices of A satisfy the following:

Ak = Rk +Ek , Rk is the best rk - rank approximation of Ak , for 1 ≤ k ≤ d−1.

The accuracy analysis of TT-SVD is similar to that of ST-HOSVD method (see
[Oseledets, 2011]).
Tensor B obtained from the TT-SVD algorithm satisfies

||A−B||2F ≤
d−1∑
k=1

||Ek ||2F .

Theorem
Tensor B obtained from TT-SVD satisfies quasi-optimality condition

||A−B||F ≤
√
d − 1||A−Abest ||F ,

where Abest is the best (r1, · · · , rd−1)-ranks approximation of A in TT-format.

Proof: As SVD gives the best rk rank approximation for Ak , we have

||Ek ||F ≤ ||A−Abest ||F for 1 ≤ k ≤ d .

Putting the values of ||Ek ||F in the error expression of TT-SVD algorithm
completes the proof.
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Why TT representation is good for high dimension tensors?

This representation allows one to perform various basic linear algebra operations
in its own structure.

Addition: The addition of two tensors in the TT-representation ,

A = A1(i1) · · ·Ad(id), B = B1(i1) · · ·Bd(id),

requires to merge cores for each mode. Auxiliary dimensions are added. The
cores Ck(ik) of C = A + B are defined as

Ck(ik) =

(
Ak(ik) 0

0 Bk(ik)

)
, for 2 ≤ k ≤ d − 1, and

C1(i1) =
(
A1(i1) B1(i1)

)
, Cd(id) =

(
Ad(id)
Bd(id)

)
.

Multiplication by a number: requires to scale one of the cores

Multidimensional contraction, Hadamard product and scalar product can
also be performed

Further approximation (or compression) can also be obtained
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Tensor network representations

Notation: Tensors are denoted by solid shapes and number of lines denote the
dimensions of the tensors. Connecting two lines implies summation (or
contraction) over the connected dimensions.

Vector : n

Matrix : n1 n2

3-dimensional tensor : n1 n2

n3

Tucker decomposition of a 3-dimensional tensor : r1n1 r2 n2

r3

n3

TT decomposition of of a 4-dimensional tensor
n1 n2 n3 n4

r1 r2 r3
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Course project

A list of topics/articles is given

Each student or a group of two students will prepare a 5-6 pages
report for the chosen topic/article

Deadline for submitting the report: Nov 5

Presentation would be after Nov 5

Email me your or your group topic/article choices (atleast two) in
preference order by Oct 15

If you want to propose another topic or article, your are more than
welcome to discuss it with me.
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Research topics

Communication costs of a specific matrix factorization

Extending a specific matrix factorization for tensors

Use of tensors in a particular domain

Neuroscience, data analysis, molecular simulations, quantum
computing, face recognition

What do I expect from you in the report?

State-of-the-art of the field

Bottleneck part of the operation

Your idea of improvement and preliminary work on why it will be
effective
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Research articles

Obtain lower bounds on data transfers for various computations on a sequential machine:
Automated Derivation of Parametric Data Movement Lower Bounds for Affine Programs

Performance optimizations for TSQR algorithm: Reconstructing Householder Vectors
from Tall-Skinny QR

Low rank approximation for stencil computations: LoRAStencil: Low-Rank Adaptation of
Stencil Computation on Tensor Cores

Sequential lower bounds and optimal algorithms for symmetric computations:
I/O-Optimal Algorithms for Symmetric Linear Algebra Kernels

Hypergraph partitioning-based methods to improve MTTKRP performance: Scalable
Sparse Tensor Decompositions in Distributed Memory Systems

A parallel method to perform MTTKRP on a parallel shared memory machine: SPLATT:
Efficient and Parallel Sparse Tensor-Matrix Multiplication

Randomization based parallel HOSVD and ST-HOSVD methods: Parallel Randomized
Tucker Decomposition Algorithms

Tucker decomposition to improve performance of convolution kernels: Stable Low-rank
Tensor Decomposition for Compression of Convolutional Neural Network

Tensor train representation for the weight matrices of the fully connected layers:
Tensorizing Neural Networks

Use of tensor train representation in quantum systems: The density-matrix
renormalization group: a short introduction
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Contents of the report for a research article

The general idea of the work

A detailed analysis of some parts

Overview of the state of the art

Mention why the work of this paper is important

Your feedback on the work (possible extensions, limitations of the work, ...)

What challenges you faced while reading the paper (which parts are not
clear, explanation is not appropriate, missing information, ...)

Each group (or person) will do a presentation of the selected topic/article for
20-35 minutes, followed by 5-10 minutes of questions/comments.
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Main idea of randomized SVD

We want to find r -rank approximation of A ∈ Rm×n. We select a matrix Q with `
(r ≤ ` ≤ n) orthonormal columns that well approximates the action of A,
A ≈ QQTA.

1 Construct B = QTA

2 Perform SVD of B, B = ŨΣV T

3 Set U = QŨ

4 Return U, Σ, V

A simple way to find Q

1 Construct a Gaussian random matrix Ω of n × ` size

2 Form X = AΩ

3 Obtain an orthonormal matrix using QR factorization, X = QR

Usually `− r is a small constant, such as 5 or 10.
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Strassen’s algorithm for matrix multiplication (C = AB)

Matrix is divided into 2×2 blocks(
C11 C12

C21 C22

)
=

(
A11 A12

A21 A22

)(
B11 B12

B21 B22

)

M1 = (A11 + A22)(B11 + B22)

M2 = (A21 + A22)B11

M3 = A11(B12 − B22)

M4 = A22(B21 − B11)

M5 = (A11 + A12)B22

M6 = (A21 − A11)(B11 + B12)

M7 = (A12 − A22)(B21 + B22)

C11 = M1 + M4 −M5 + M7

C12 = M3 + M5

C21 = M2 + M4

C22 = M1 −M2 + M3 + M6
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2× 2 Matrix multiplication as a tensor operation

(
C11 C12

C21 C22

)
=

(
A11 A12

A21 A22

)(
B11 B12

B21 B22

)
We can write this multiplication as a tensor operation,

T ×1


A11

A12

A21

A22


T

×2


B11

B12

B21

B22


T

=


C11

C12

C21

C22


Where T is a 4× 4× 4 tensor with the following frontal slices:

T1 =

(
1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

)
T2 =

(
0 1 0 0
0 0 0 1
0 0 0 0
0 0 0 0

)
T3 =

(
0 0 0 0
0 0 0 0
1 0 0 0
0 0 1 0

)
T4 =

(
0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 1

)
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2× 2 Matrix multiplication as a tensor operation

(
C11 C12

C21 C22

)
=

(
A11 A12

A21 A22

)(
B11 B12

B21 B22

)
We can write this multiplication as a tensor operation,

T ×1


A11

A12

A21

A22


T

×2


B11

B12

B21

B22


T

=


C11

C12

C21

C22


For example,

T2 ×1


A11
A12
A21
A22


T

×2


B11
B12
B21
B22


T

= (A11 A12 A21 A22)


0 1 0 0
0 0 0 1
0 0 0 0
0 0 0 0




B11
B12
B21
B22

 = A11B12 + A12B22 = C12
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Matrix multiplication with CP decomposition

CP decomposition of T, T = JU,V ,W K can be written as,

T =
R∑

r=1

ur ◦ vr ◦ wr

Here ur , vr and wr are the columns of U, V and W , respectively. R is the
rank of T. We can write matrix multiplication as,

T ×1


A11
A12
A21
A22


T

×2


B11
B12
B21
B22


T

=
R∑

r=1

(ur ◦ vr ◦ wr ) ×1


A11
A12
A21
A22


T

×2


B11
B12
B21
B22


T

=
R∑

r=1

[
(A11 A12 A21 A22)ur (B11 B12 B21 B22)vr

]
wr =


C11
C12
C21
C22


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Factor matrices and Strassen’s algorithm

Factor matrices,

U =


1 0 1 0 1 −1 0
0 0 0 0 1 0 1
0 1 0 0 0 1 0
1 1 0 1 0 0 −1



V =


1 1 0 −1 0 1 0
0 0 1 0 0 1 0
0 0 0 1 0 0 1
1 0 −1 0 1 0 1



W =


1 0 0 1 −1 0 1
0 0 1 0 1 0 0
0 1 0 1 0 0 0
1 −1 1 0 0 1 0



Strassen’s algorithm,

M1 = (A11 + A22)(B11 + B22)

M2 = (A21 + A22)B11

M3 = A11(B12 − B22)

M4 = A22(B21 − B11)

M5 = (A11 + A12)B22

M6 = (A21 − A11)(B11 + B12)

M7 = (A12 − A22)(B21 + B22)

C11 = M1 + M4 −M5 + M7

C12 = M3 + M5

C21 = M2 + M4

C22 = M1 −M2 + M3 + M6

Factor matrices U, V and W construct the algorithm.
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