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The density-matrix renormalization group (DMRG) method has established itself over
the last decade as the leading method for the simulation of the statics and dynamics of
one-dimensional strongly correlated quantum lattice systems. The DMRG is a method
that shares features of a renormalization group procedure (which here generates a
flow in the space of reduced density operators) and of a variational method that
operates on a highly interesting class of quantum states, so-called matrix product states
(MPSs). The DMRG method is presented here entirely in the MPS language. While the
DMRG generally fails in larger two-dimensional systems, the MPS picture suggests a
straightforward generalization to higher dimensions in the framework of tensor network
states. The resulting algorithms, however, suffer from difficulties absent in one dimension,
apart from a much more unfavourable efficiency, such that their ultimate success remains
far from clear at the moment.
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1. Introduction

In the last decade, the density-matrix renormalization group (DMRG), invented
by White [1,2], has established itself as the leading method for the simulation
of the statics and dynamics of one-dimensional strongly correlated quantum
systems, both at zero and finite temperatures (for more recent reviews, see [3–5]).
Nevertheless, attempts have been made to extend this method to the simulation of
two-dimensional quantum systems and (three-dimensional) small clusters, such
as nuclei or molecules. These attempts are currently being advanced owing to
the alternative view of the DMRG as a variational method in the space of matrix
product states (MPSs) [6–9] because they allow for an easy extension of the ansatz
class to higher dimensions [10,11], which might hold interesting promise for such
finite clusters of particles. In this short overview, following [5], I will first introduce
and discuss MPSs, introduce the most basic version of the DMRG as a variational
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2644 U. Schollwöck

method and discuss its dual nature as a variational and renormalization group
(RG) method, as well as the reasons for its successes and limitations. I will
conclude by a short discussion of the generalizations to higher dimensions.

2. Density-matrix renormalization group in one dimension

(a) Matrix product states

Let us assume that our system consists of L sites on a one-dimensional chain with
local state spaces {|si〉} on site i of dimension d each. Then, it can be shown (e.g.
[5]) that any quantum state

|j〉 =
∑

s

cs|s〉, (2.1)

where |s〉 = |s1, s2, . . . , sL〉, can be brought (for example) by a sequence of
singular value decompositions (SVDs) exactly into the form of an MPS, namely

|j〉 =
∑

s

M s1M s2 . . . M sL−1M sL |s〉, (2.2)

where on each lattice site i we introduce a set of d matrices M si . To see this, let us
briefly recall the key properties of an SVD (e.g. [12]): for an arbitrary, rectangular
matrix A of dimension (m × n), it provides a decomposition A = USV †, where
the matrices U , S and V † have dimensions (m × p), (p × p) and (p × n), where
p = min(m, n), the smaller of the two original dimensions. In addition, the three
matrices have the following properties: U consists of p orthonormal columns,
which can be read as a set of orthonormal vectors (hence, U †U = I ); similarly,
V † consists of p orthonormal rows, which again can be read as a set of orthonormal
vectors (and V †V = I ); they are referred to as the left and right singular vectors.
S is a non-negative diagonal matrix, with r < p positive singular values on the
diagonal; r is the rank of A. In order to carry out the transformation into an
MPS, we start by reshaping cs into a matrix Js1,(s2 ... sL) = cs1 ... sL of dimension
(d × dL−1). This is now singular value decomposed as

Js1,(s2 ... sL) =
∑
a1

Us1,a1Sa1V
†
a1,(s2 ... sL). (2.3)

The U -matrix has dimension d × d. As the next step, we reshape Sa1V
†
a1,(s2...sL)

into a matrix J(a1s2),(s3...sL) of dimension (d2 × dL−2), where the row dimension
may be smaller if singular values of the previous SVD happen to be zero. This is
again singular value decomposed as

J(a1s2),(s3 ... sL) =
∑
a2

U(a1s2),a2Sa2V
†
a2,(s3 ... sL), (2.4)

with the dimension of the U -matrix being d2 × d2. If we continue this procedure
to the end of the chain, we end up with a sequence of U -matrices as Us1,a1 ,
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σi

σi

σ1 σL

Figure 1. Definition of the graphical representation of a matrix product state (MPS) constituent,
a matrix M s

ab, its conjugate, and of an MPS. Note that on the first and last sites, the matrices
reduce to row and column vectors (one horizontal leg only). The evaluation rule is to contract over
all connected legs.

U(a1s2),a2 , U(a2s3),a3 and so on, with the last matrix being U(aL−1sL),1. The total
state then reads

|j〉 =
∑

s

∑
a1,...,aL−1

Us1,a1U(a1s2),a2 . . . U(aL−2sL−1),aL−1U(aL−1sL),1|s〉. (2.5)

To simplify the notation, we now define the d matrices M si per site as M si
ai−1,ai

=
U(ai−1si),ai and use that the sum over the ai is then nothing but a sequence of
matrix multiplications of M si matrices as in equation (2.2).

It is useful to introduce a graphical notation for MPSs (figure 1), where each
matrix is represented by a blob with outgoing legs, namely a vertical physical
leg and horizontal legs corresponding to the matrix indices. The rule is that all
connected legs are contracted, leading to the MPSs as defined above.

If we review the above sequence of decompositions and the sizes of
the U -matrices, the resulting M s matrix dimensions will be (1 × d), (d ×
d2), . . . , (dL/2−1 × dL/2), (dL/2 × dL/2−1), . . . , (d2 × d), (d × 1): the M -matrices are
always cut in the row dimension by a factor of d by the reshaping from the
U -matrices; beyond the centre of the chain, the column dimension will be
smaller than the row dimension of the singular value decomposed matrix, hence
the dimensions of the U -matrices will go down again. In systems of interest,
where dL/2 will be exponentially large in system size, this exact representation
is obviously useless in numerical practice. But let us assume that we consider
an MPS where matrix dimensions do not exceed some number D, which will
be O(100) through O(1000), and that these approximate MPSs are a very close
approximation to the exact quantum states of interest. Under this assumption,
we may ask about quantum mechanics in this restricted set of MPSs of
dimension D.

Before we consider typical MPS operations, we note that MPS representations
of quantum states are not unique: between any matrix pair M siM si+1 , we may
insert I = XX−1, where X is an invertible matrix of suitable dimensions, changing
M si → M siX and M si+1 → X−1M si+1 . One of the main usages of this is to bring
the MPS into canonical form: any MPS can be written in left-canonical form

|j〉 =
∑

s

As1As2 . . . AsL−1AsL |s〉, (2.6)

where the matrices Asi are left-normalized,
∑

si
Asi†Asi = I , or in right-canonical

form
|j〉 =

∑
s

Bs1Bs2 . . . BsL−1BsL |s〉, (2.7)

Phil. Trans. R. Soc. A (2011)
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2646 U. Schollwöck

where the matrices Bsi are right-normalized,
∑

si
BsiBsi† = I , or in mixed-

canonical form

|j〉 =
∑

s

As1As2 . . . Asi JBsi+1 . . . BsL−1BsL |s〉, (2.8)

where the matrix J is of matching dimensions; one can also contract e.g. Asi J →
M si , which generates a variety of ansatz classes for the DMRG. To see how this
can be done iteratively, consider a state that is already partially in left-canonical
form on its left end,

|j〉 =
∑

s

As1As2 . . . AsiM si+1 . . . M sL |s〉. (2.9)

Then, one way of making M si+1 left-canonical is to reshape the set of
matrices M si+1

ai ,ai+1 into one matrix M(si+1ai),ai+1 , which upon an SVD reads∑
si+1

U(si+1ai),si+1Ssi+1V
†
si+1,ai+1 . U is reshaped into a set of matrices Asi

ai ,si+1
, which

meet the left-normalization condition owing to the column orthonormality of U .
SV † is multiplied into M si+2 , and the next iterative step occurs at site i + 2.
Similarly, one can start from the right to obtain right-normalized matrices. In
fact, the proof of the representation in equation (2.2) generated left-normalized
matrices right away, owing to the orthonormality properties of the U -matrices.

If we form states |ai〉A on block A formed from sites 1 through to i and |ai〉B
on block B formed from sites i + 1 through to L as

|ai〉A =
∑

s1,...,si

(M s1 . . . M si )ai |s1, . . . , si〉, (2.10)

and similarly for |ai〉B , then the left- and right-normalization conditions
correspond to orthonormality conditions A〈ai|a ′

i〉A = dai ,a′
i

and B〈ai|a ′
i〉B = dai ,a′

i
,

respectively. Generally, it is true that one can write

|ai+1〉A =
∑

ai ,si+1

M si+1
ai ,ai+1

|ai〉A|si+1〉, (2.11)

where M si+1
ai ,ai+1 = 〈aisi+1|ai+1〉. This establishes the connection between MPS

notation and block growth i → i + 1, which—taking into account decimation of
the states |ai+1〉A—makes the connection to RG growth steps.

In the mixed-canonical representation, the nature of the MPS as a systematic
low-entanglement approximation to a quantum state becomes most obvious.
If we do an SVD on J = USV † and absorb matrices U and V † into the
adjoining A- and B-matrices, this does not change the orthonormality of the
block states because of the properties of U and V †, but the state now takes
the form

|j〉 =
r∑
ai

sai |ai〉A|ai〉B , (2.12)

where the sum runs over the r non-vanishing (positive) diagonal elements sai of
S , linking up states in A and B in pairwise fashion. This is the so-called Schmidt
decomposition of a quantum state, with r being the Schmidt rank. If we have to
cut the sum at some D < r , the quality of the approximation will depend on how

Phil. Trans. R. Soc. A (2011)
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O

|ψ〉

〈ψ|

Figure 2. Graphical representation of the calculation of the norm of a state, potentially including
an operator whose expectation value is calculated. Lines are contracted over iteratively, starting
either from the left or right, for maximal efficiency.

rapidly the sai decay; the optimal approximation is given by keeping the D largest
sai . But it is easy to see that at the same time, the reduced density operators for
A and B are given as r̂A = TrB |j〉〈j| = ∑

ai
s2
ai
|ai〉A A〈ai| and analogously r̂B . A

good approximation is then possible if the eigenspectrum of the reduced density
operators decays quickly. It is usually not known, but we may argue that a quickly
decaying spectrum corresponds to small entanglement SA|B = − ∑

a s2
a log2 s2

a , and
MPSs systematically approximate low-entanglement states well. Let us take that
for granted and postpone the crucial question when this is actually the case to
later, and focus on operations on MPSs.

The most important operations on MPSs are overlaps and expectation values.
Let us consider the calculation of 〈f|j〉, the generalization to 〈j|Ô|j〉 is
completely obvious. We have

〈f|j〉 =
∑

s

M̃ s1∗ . . . M̃ sL∗M s1 . . . M sL . (2.13)

Transposing the scalar formed from the M̃ . . . M̃ (which is the identity operation),
we arrive at adjoints with reversed ordering,

〈f|j〉 =
∑

s

M̃ sL† . . . M̃ s1†M s1 . . . M sL . (2.14)

To represent this graphically, we introduce an inverted matrix-blob to correspond
to the complex-conjugate matrix M si∗ (figure 1). In the resulting pictorial
representation of the overlap calculation (figure 2), this calculation then becomes
much simpler, if we follow the rule that all bond indices are summed over.
To evaluate this expression efficiently, the following order of contractions
is advisable:

〈f|j〉 =
∑
sL

M̃ sL†

(
. . .

(∑
s2

M̃ s2†

(∑
s1

M̃ s1†M s1

)
M s2

)
. . .

)
M sL , (2.15)

which contracts in O(LD3) operations. In order to calculate an expectation value,
say at site i, the sum to be evaluated there changes to∑

si ,s′
i

Ôsi ,s′
iM si∗EM s′

i , (2.16)

where E is the result of all the contractions up to site i − 1.

Phil. Trans. R. Soc. A (2011)
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2648 U. Schollwöck

If we exploit left-normalization, it is easy to see that for 〈j|j〉 matrix
contractions collapse trivially to the identity I (similarly for right-normalization,
if we rearrange the contractions to go from L to 1). In mixed-canonical notation,
expectation values for operators that sit right next to the point where left- and
right-normalized matrices meet become particularly efficient, as essentially all
contractions become trivial.

The last important operation on an MPS is its compression. Assume that some
operation (like the application of a matrix product operator (MPO) to an MPS,
see below) generates an MPS of dimension D′, but we can only handle dimension
D efficiently. How do we approximate |j〉 by |j̃〉, an MPS of dimension D, such
that the distance between the two states becomes minimal, i.e. the approximation
becomes optimal? Essentially two techniques exist, one based on SVD and not
necessarily optimal, but frequently very close to it, and a variational technique,
that is more complicated, but optimal.

Let us consider an MPS in mixed-canonical representation, with L[�] =
diag(s1, s2, . . .),

|j〉 =
∑

s

As1As2 . . . As�L[�]Bs�+1 . . . BsL−1BsL |s〉, (2.17)

from which we read off the Schmidt decomposition |j〉 = ∑D′
a�=1 sa�

|a�〉A|a�〉B ,
where the states on A and B form orthonormal sets, respectively. We now look
for the state |j̃〉 that approximates |j〉 best in the 2-norm and can be spanned by
a smaller number of D states each in A and B. This is achieved by retaining the
D largest sa�

, and the compressed state simply reads |j〉 = ∑D
a�=1 sa�

|a�〉A|a�〉B . If
normalization is desired, the retained singular values must be rescaled.

This procedure rests on the orthonormality of the states on A and B, therefore
can only be carried out at one bond. In order to shrink the state on all sites,
we have to work our way through all mixed-canonical representations, say from
right to left, truncate and shift the boundary between left- and right-normalized
matrices by one site to the left, using techniques from canonization.

After the first step of right-canonization of a left-canonical state, it reads

|j(L−1)〉 =
∑

s

As1 . . . AsL−1USBsL |s〉, (2.18)

where I have already reshaped B, which is right-normalized and guarantees
that states formed as |aL−1〉B = ∑

sL
(BsL)aL−1,1|sL〉 are orthonormal. But so are

the states

|aL−1〉A =
∑

s1...sL−1

(As1 . . . AsL−1U )1,aL−1 |s1 . . . sL−1〉, (2.19)

as SVD guarantees U †U = 1: we are just doing a basis transformation within the
orthonormal basis set constructed from the left-normalized Asi . Hence, we have
a correct Schmidt decomposition as

|j(L−1)〉 =
∑
aL−1

saL−1 |aL−1〉A|aL−1〉B . (2.20)

Phil. Trans. R. Soc. A (2011)
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Review. The density-matrix RG 2649

The difference to a right canonization is now the truncation: matrices U , S and
BsL are truncated (and singular values possibly renormalized) to Ũ , S̃ and B̃sL

just as explained before: retain the D largest singular values. B̃sL is still right-
normalized. The next AsL−1 to the left, Ũ and S̃ are multiplied together to form
M sL−1 . By reshaping and singular value decomposing,

M s
i,j = Mi,(s,j) =

∑
k

Ui,kSkBk,(s,j) =
∑

k

Ui,kSkBs
k,j , (2.21)

we obtain right-normalized BsL−1 , truncate U , S and BsL−1 to Ũ , S̃ and B̃sL−1 , and
the procedure continues. At the end, the compressed MPS |j̃〉 is right-normalized
and given by B̃-matrices.

The disadvantage of the procedure is that there is a one-sided dependence of
truncations on each other: truncations further to the left depend on those to the
right, but not vice versa. If the truncation is small, the introduced additional
inaccuracy is minor; however, for cases where large truncations may occur, the
dependence might become too strong and the truncation far from optimal.

The optimal approach is to start from an ansatz MPS of the desired reduced
dimension, and to minimize its distance to the MPS to be approximated
iteratively, i.e. by changing its M s matrices iteratively. The matrices play the
role of variational parameters.

Minimizing ‖|j〉 − |j̃〉‖2
2 with respect to |j̃〉 is a highly nonlinear optimization

problem in the M̃ si . But this can be done iteratively and linearly as follows.
Starting with an initial guess for |j̃〉, we sweep through the set of M̃ si site by
site, keeping all other matrices fixed and choosing the new M̃ si , such that the
distance is minimized. Repeating this sweep through the matrices several times
will lead to a converged optimal approximation.

The new M̃ si is found by extremizing with respect to M̃ si∗
ai−1,ai

, which only shows
up in −〈j̃|j〉 + 〈j̃|j̃〉. We find

v

vM̃ si∗
ai−1,ai

(〈j̃|j̃〉 − 〈j̃|j〉)

=
∑
s∗

(M̃ s1∗ . . . M̃ si−1∗)1,ai−1(M̃
si+1∗ . . . M̃ sL∗)ai ,1M̃

s1 . . . M̃ si . . . M̃ sL

−
∑
s∗

(M̃ s1∗ . . . M̃ si−1∗)1,ai−1(M̃
si+1∗ . . . M̃ sL∗)ai ,1M

s1 . . . M si . . . M sL = 0.

The sum over s∗ runs over all physical sites except i. Assuming that we keep
|j̃〉 at each iteration in mixed-canonical form, Ãs1 . . . Ãsi−1M̃ si B̃si+1 . . . B̃sL , the
first term simplifies owing to the normalization conditions to M̃ si . Then, we obtain
the equation

M̃ si
ai−1,ai

= Osi
ai−1,ai

, (2.22)

Phil. Trans. R. Soc. A (2011)
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2650 U. Schollwöck

=

L R

Figure 3. Equation for iterative compression of an MPS for a suitably normalized state. The fatter
lines correspond to the state to be compressed, the thinner lines to the compressed state.

where Osi
ai−1,ai

is given by ∑
a′
i−1a

′
i

Lai−1,a′
i−1

M si
a′
i−1,a

′
i
Rai ,a′

i
, (2.23)

with L and R as indicated in figure 3. In fact, calculating L and R is nothing
but carrying out the first steps of an overlap calculation, starting from the left
or right. If one sweeps through the system from left to right and back, one can
build L and R iteratively from previous steps, which is the most efficient way.

To make this work for an entire chain, we have to shift the boundary between
the left- and right-normalized matrices as we move through the chain. But this
can be done by applying one step of normalization (by SVD) to the matrices on
a single site.

(b) Matrix product operators

In the previous section, we have considered a local operator Ôsi ,s′
i , which ties

in nicely with the local MPS notation. For operators like the Hamiltonian Ĥ ,
which consists of sums of (in practice usually) local terms of operator products,
the natural question arises whether such operators can also be expressed in a
form resembling an MPS. This is indeed the case and leads directly to MPOs.
The most general operator acting on our L-site system is given as

Ô =
∑
s,s′

cs,s′ |s〉〈s′|. (2.24)

Interpreting the scalar coefficients as c(s1,s′
1),...,(sL ,s′

L), we can, by analogy to an
MPS, conclude that SVDs allow a decomposition as

Ô =
∑
s,s′

W s1s′
1W s2s′

2 . . . W sLs′
L |s〉〈s′|, (2.25)

where at each lattice site, we introduce a set of d2 matrices W sis
′
i . The

previous statements about gauge degrees of freedom, orthonormalization types,
etc. generalize directly to MPOs.

The graphical representation of an MPO is also an obvious extension from the
MPS case, with an ingoing physical leg down and outgoing physical leg going
up (figure 4).

Phil. Trans. R. Soc. A (2011)
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σ´

σσ1 σL

σ´1 σ´L

Figure 4. Graphical representation of a matrix product operator (MPO), with in- and outgoing
physical legs sticking out horizontally.

σ1 σL

σ1 σL

Figure 5. Graphical representation of the application of an MPO to an MPS. Matching legs are
contracted over, the resulting MPS multiplies the dimensions of the underlying objects.

The application of an MPO to an MPS is very elegant (figure 5),

Ô|j〉 =
∑
s,s′

(W s1,s′
1W s2,s′

2 . . .)(M s′
1M s′

2 . . .)|s〉

=
∑
s,s′

∑
a,b

(W
s1,s′

1
1,b1

W
s2,s′

2
b1,b2

. . .)(M
s′

1
1,a1

M
s′

2
a1,a2 . . .)|s〉

=
∑
s,s′

∑
a,b

(W
s1,s′

1
1,b1

M
s′

1
1,a1

)(W
s2,s′

2
b1,b2

M
s′

2
a1,a2) . . . |s〉

=
∑

s

∑
a,b

N s1
(1,1),(b1,a1)

N s2
(b1,a1),(b2,a2)

. . . |s〉

=
∑

s

N s1N s2 . . . |s〉.

The elegance stems from the observation that the form of the MPS remains
invariant, with an increase of the matrix size: the new MPS matrices,

N si
(bi−1,ai−1),(bi ,ai)

=
∑

s′
i

W
sis

′
i

bi−1bi
M

s′
i

ai−1ai , (2.26)

have the multiplied dimension of the MPS and the MPO. At the same time, like in
the case of an overlap, the operation is only of small polynomial, not exponential
complexity. Of course, it remains to show that it is in fact possible to construct

Phil. Trans. R. Soc. A (2011)
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2652 U. Schollwöck

the MPO of, e.g. an Hamiltonian ‘by hand’, because the conceptual way of using
an SVD might be exponentially complicated. But as we will see, this is no big
problem indeed [13,14].

Let us consider the following simple Hamiltonian

Ĥ =
L−1∑
i=1

{
J
2

Ŝ+
i Ŝ−

i+1 + J
2

Ŝ−
i Ŝ+

i+1 + J z Ŝ z
i Ŝ z

i+1

}
. (2.27)

As this is a shorthand for sums of tensor products of operators while omitting all
the identity operators on other sites, it is convenient to reconsider the building
block W ss′

bb′ combined with its associated projector |s〉〈s′| to become an operator-
valued matrix Ŵb,b′ = ∑

ss′ W ss′
b,b′ |s〉〈s′| such that the MPO takes the simple form

Ô = Ŵ [1]Ŵ [2] . . . Ŵ [L]. (2.28)

In order to construct the MPO, we move through an arbitrary operator
‘string’ appearing in Ĥ : starting from the right end, the string contains unit
operators, until at one point, we encounter one of (in our example) three non-
trivial operators. For the field operator, the string part further to the left may only
contain unit operators; for the interaction operators, the complementary operator
must follow immediately to complete the interaction term, to be continued by unit
operators further to the left. For book-keeping, we introduce five corresponding
states of the string at some given bond: state 1, only units to the right; states
2,3,4, one Ŝ+, Ŝ−, Ŝ z just to the right; state 5, completed interaction somewhere
to the right. Comparing the state of a string left and right of one site, only a
few transitions are allowed: 1 → 1 by the unit operator Î , 1 → 2 by Ŝ+, 1 → 3
by Ŝ−, 1 → 4 by Ŝ z . Furthermore 2 → 5 by (J /2)Ŝ−, 3 → 5 by (J /2)Ŝ+ and
4 → 5 by J z Ŝ z , to complete the interaction term, and 5 → 5 for a completed
interaction by the unit operator Î . Furthermore, all string states must start at
1 to the right of the last site and end at 5 (i.e. the dimension DW of the MPO
to be) to the left of the first site. This can now be encoded by the following
operator-valued matrices:

Ŵ [i] =

⎡
⎢⎢⎢⎢⎢⎣

Î 0 0 0 0
Ŝ+ 0 0 0 0
Ŝ− 0 0 0 0
Ŝ z 0 0 0 0
0 (J /2)Ŝ− (J /2)Ŝ+ J z Ŝ z Î

⎤
⎥⎥⎥⎥⎥⎦, (2.29)

and on the first and last sites

Ŵ [1] = [
0 (J /2)Ŝ− (J /2)Ŝ+ J z Ŝ z Î

]
Ŵ [L] =

⎡
⎢⎢⎢⎢⎣

Î
Ŝ+

Ŝ−

Ŝ z

0

⎤
⎥⎥⎥⎥⎦. (2.30)
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Inserting the explicit operator representations gives the desired W ss′
-matrices for

the MPO. The MPO in this example has dimension DW = 5. For longer-ranged
Hamiltonians, further ‘intermediate states’ have to be introduced: for

Ĥ = J1

∑
i

Ŝ z
i Ŝ z

i+1 + J2

∑
i

Ŝ z
i Ŝ z

i+2, (2.31)

the bulk operator would read

Ŵ [i] =

⎡
⎢⎢⎣

Î 0 0 0
Ŝ z 0 0 0
0 Î 0 0
0 J1Ŝ z J2Ŝ z Î ,

⎤
⎥⎥⎦, (2.32)

as one can verify by working out the operator string paths allowed by this
construction. Except for special cases like exponentially decaying interactions,
which find a very compact representation [15,16], the dimension of the MPO will
grow with interaction range; however, we may always compress an MPO like an
MPS to a smaller dimensional object with a minimal loss of information.

(c) The finite-system density-matrix renormalization group algorithm

The so-called finite-system DMRG algorithm is nothing but a variational
ground-state search in the ansatz space of D-dimensional MPSs; hence, it is also
called vMPS. Let me mention that historically, a finite-system DMRG was not
framed in the language of an MPS, but rather in terms of the analysis of reduced
density operators of subsystems (blocks) of the chain. If, on the other hand, one
assumes that MPSs are very efficient at encoding one-dimensional states (as they
are, see §2e), then the following algorithm for ground-state searches in that state
class follows naturally—and it then turns out that White [1] had had the perfect
intuition, as the algorithms are identical.

As increasing D leads to ansatz spaces that are supersets of the previous ones,
the quality of approximation improves monotonically; in view of the exact MPS
representation of quantum states, the limit D → ∞ is exact. These two features
allow for reliable extrapolation of results obtained for sequences of finite D.

Finding the ground state is equivalent to minimizing

E[|j〉] = 〈j|Ĥ |j〉
〈j|j〉 (2.33)

or, using a Lagrange multplier l, minimizing

〈j|Ĥ |j〉 − l〈j|j〉. (2.34)

Inserting the MPS encoding of |j〉, this turns into a highly nonlinear problem
in the variables M si

ai−1,ai
which is unsolvable in numerical practice. But in fact,

this problem can be turned into a sequence of linear problems, whose solutions
will lead to an iterative improvement of the solution (in the sense that energy is
monotonically lowered), where, with suitable numerical tricks, it can be ensured
(in the sense of actual numerical practice) that the (energetically) optimal state
in this ansatz class can be reached. One starts from a guess state, which can be
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2654 U. Schollwöck

–λ = 0

Figure 6. Standard eigenvalue problem for the optimization of M s�
a�−1,a�

. The unknown matrix is
circled on the left network. The structure to the left of it is referred to as L in the text, the right
structure as R.

picked either randomly (i.e. As matrices with random entries) or be obtained from
some warm-up algorithm such as the so-called infinite-system DMRG algorithm
[1,2]. We consider the MPS state provided by the initial guess and pick one site
�, while all other sites remain inert. We then optimize energy with respect to the
As� matrices belonging to this site. Then, the variables appear in equation (2.34)
only in a quadratic form, for which the determination of the extremum is a benign
linear algebra problem. This will lower the energy, and find a variationally better
state, but of course not the optimal one. Now one continues to vary the matrix
elements on another site for finding a state again lower in energy, moving through
all sites multiple times, until the energy does not improve anymore.

Let us analyse the parts of equation (2.34). If we keep the state suitably mixed
normalized, the normalization conditions imply that

〈j|j〉 =
∑

s�

∑
a�−1a�

M s�∗
a�−1,a�

M s�
a�−1,a�

. (2.35)

Considering 〈j|Ĥ |j〉, with Ĥ in MPO language and taking the extremum of
equation (2.34) with respect to M s�∗

a�−1,a�
, we find

∑
s′

�

∑
a′
�−1a

′
�

∑
b�−1,b�

L
a�−1,a′

�−1
b�−1

W
s�,s′

�

b�−1,b�
R

a�,a′
�

b�
M

s′
�

a′
�−1,a

′
�
− lM s�

a�−1,a�
= 0, (2.36)

with the mathematical objects as defined graphically in figure 6. This is in fact
a very simple eigenvalue equation; if we introduce a matrix H by reshaping

H(s�a�−1a�),(s′
�a

′
�−1a

′
�)

= ∑
b�−1,b�

L
a�−1,a′

�−1
b�−1

W
s�,s′

�

b�−1,b�
R

a�,a′
�

b�
and a vector v with vs�a�−1a�

=
M s�

a�−1,a�
, we arrive at an eigenvalue problem of matrix dimension (dD2 × dD2),

Hv − lv = 0. (2.37)

Solving for the lowest eigenvalue l0 gives us a v0
s�a�−1a�

, which is reshaped back
to M s�

a�−1,a�
, l0 being the current ground-state energy estimate. In general, dD2

is too large for an exact diagonalization, but as we are only interested in the
lowest eigenvalue and eigenstate, an iterative eigensolver that aims for the ends
of the spectrum will do. Typical methods are the Lanczos or Jacobi–Davidson
large sparse matrix solvers.
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The optimal algorithm then runs as follows.

— Start from some initial guess for |j〉, which is right-normalized, i.e. consists
of B-matrices only.

— Calculate the R-expressions iteratively for all site positions L − 1 through
to 1 iteratively.

— Right sweep: starting from site � = 1 through to site L − 1, sweep through
the lattice to the right as follows: solve the standard eigenproblem by an
iterative eigensolver for M s� , taking its current value as the starting point.
Once the solution is obtained, left-normalize M s� into As� by an SVD
to maintain the desired normalization structure. The remaining matrices
of the SVD are multiplied to the M s�+1 to the right, which will be the
starting guess for the eigensolver for the next site. Build iteratively the
L expression by adding one more site. Move on by one site, � → � + 1,
and repeat.

— Left sweep: starting from site � = L through to site 2, sweep through
the lattice to the left as follows: solve the standard eigenproblem by an
iterative eigensolver for M s� , taking its current value as the starting point.
Once the solution is obtained, right-normalize M s� into Bs� by an SVD
to maintain the desired normalization structure. The remaining matrices
of the SVD are multiplied to the M s�−1 to the left, which will be the
starting guess for the eigensolver for the next site. Build iteratively the
R expression by adding one more site. Move on by one site, � → � − 1,
and repeat.

— Repeat right and left sweeps, until convergence is achieved. Convergence is
achieved if energy converges, but the best test is (using MPOs) to consider
〈j|Ĥ 2|j〉 − (〈j|Ĥ |j〉)2 to see whether an eigenstate has been reached; this
expression should approach 0 as closely as possible.

In this iterative process, the energy can only go down, as we continuously
improve by varying the parameters. In fact, this most simple version of the DMRG
can be improved in terms of stability and performance but the core algorithm
remains unchanged; for details, see e.g. Schollwöck [5].

(d) Variational or renormalization group method?

In the exposition just given, the DMRG clearly emerges as a variational
method, and the link to true RG methods (with scaling and truncating) is quite
tenuous. It can, however, be put on a more solid footing if one considers the
reduced density operators of subsystems and takes those to the thermodynamic
limit [6]. For these, a fixed point relationship holds. The DMRG, therefore, sets
up an RG flow in the space of reduced density operators, not in the space of
Hamiltonians, as other RG methods would do.

(e) Why does it work and why does it fail?

The performance of all methods presented here rests on whether a quantum
state can be approximated well by an MPS with bonds of a manageable
dimension D. As we can cut a state into two parts across such a bond, we have to

Phil. Trans. R. Soc. A (2011)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

04
 O

ct
ob

er
 2

02
4 



2656 U. Schollwöck

consider bipartite quantum systems AB. Any state |j〉 = ∑
ij jij |i〉A|j〉B , where

the states |i〉A and |j〉B form orthonormal bases of dimensions NA and NB ,
respectively. Thinking of the jij as entries of a rectangular matrix J (dimension
NA × NB), the reduced density matrices rA and rB take the forms

rA = JJ† and rB = J†J. (2.38)

If we assume |j〉 to be normalized, the eigenvalues wa of rA are non-negative, and
sum to 1. This allows us to interpret them directly as statistical weights. If we
assume that we know |j〉 exactly, the question of approximability reduces to how
much statistical weight rests in the D eigenstates with the largest eigenvalues. In
the few cases where this is the case, such analyses have been carried out in one
and two dimensions starting with Peschel et al. [17] and Okunishi et al. [18]. They
reveal that in one dimension for gapped systems, eigenvalues wa generically decay
exponentially fast (roughly as e−c ln2 a), which explains the success of the DMRG,
but in two-dimensional stripe geometries of size L × W , L 	 W , c ∝ 1/W , such
that with increasing width W (increasing two dimensionality) the eigenspectrum
decay is so slow as to make DMRG inefficient.

Usually, we have no clear idea about the eigenvalue spectrum; but it turns
out that in such cases, entanglement entropies can serve as ‘proxy’ quantities,
namely the von Neumann entanglement or entanglement entropy. It is given by
the non-vanishing part of the eigenvalue spectrum of rA as

SA|B = −Tr rA log2 rA = −
∑

a

wa log2 wa . (2.39)

If we now consider a bipartitioning A|B where AB is in the thermodynamic
limit and A of size LD, with D the spatial dimension, the so-called area laws
[19–23] predict that for ground states of short-ranged Hamiltonians with a
gap to excitations entanglement entropy are not extensive, but proportional to
the surface, i.e. S(A|B) ∼ LD−1, as opposed to thermal entropy. This implies
S ∼ cst. in one dimension and S ∼ L in two dimensions. At criticality, a
much richer structure emerges, which usually involves the presence or absence
of logarithmic corrections (S(L) ∝ log L, S(L) ∝ L log L in one dimension and
two dimensions), see Srednicki [20], Vidal et al. [24], Latorre et al. [25],
Gioev & Klich [26] and Barthel et al. [27]. It should be emphasized that these
properties of ground states are highly unusual: in the thermodynamic limit,
a random state out of Hilbert space will indeed show extensive entanglement
entropy with probability 1.

In a mathematically non-rigorous way, one can now make contact between the
DMRG and the area laws of quantum entanglement: between two D-dimensional
state spaces for A and B, as provided by a D-dimensional MPS, the maximal
entanglement is log2 D in the case where all eigenvalues of rA are identical and
D−1 (such that rA is maximally mixed); meaning that one needs a state of
dimension 2S and more to encode entanglement S properly. This implies that
for gapped systems in one dimension, an increase in system size will not lead to
a strong increase in D; in two dimensions, D ∼ 2L, such that the DMRG will fail,
even for relatively small system sizes, as resources, i.e. MPS dimensions, have to
grow exponentially (this however does not exclude very precise results for small
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two-dimensional clusters or quite large stripes). Critical systems in one dimension
are borderline cases: the logarithmic correction makes them untreatable in the
thermodynamic limit, but enough data for excellent finite-size extrapolations can
be obtained.

3. Generalizations of the density-matrix renormalization group ansatz to
higher dimensions

(a) Tensor network states

Extensive attempts to simulate two-dimensional quantum systems within the
conventional paradigm of DMRG as a one-dimensional method have been made
over the last 15 years; generically, the two-dimensional system is seen as a one-
dimensional snake where interactions that on the true lattice are short-ranged
are now fictitiously long-ranged (with a range corresponding to the smaller of the
two linear sizes). As discussed above, the entanglement scaling implies a matrix
dimension that grows exponentially with system size; nevertheless, impressive
results on wide strips have been obtained ([28,29] among the first and most recent
ones), but it remains clear that except for astute finite-size extrapolations, there
is no way towards the thermodynamic limit.

On the other hand, we may interpret the two matrix indices of M si as bond
indices, with the row and column corresponding to bonds going to the left and
right neighbour on a one-dimensional chain, as already implied by the graphical
representation. It is, therefore, a natural extension to consider tensors T si

udlr
with four indices that correspond to the four bonds up, down, left and right
on a two-dimensional square lattice and similar generalizations on other lattices
(triangular, hexagonal and so on). Instead of an MPS, we would consider [10] a
tensor product state (TPS) or tensor network states (TNSs)—a popular other
name being projected entangled pair states (PEPS; [11])—reading

|j〉 =
∑

s

C[T s1 , T s2 , . . . , T sL ]|s〉, (3.1)

where the C stands for a contraction over all connected legs in a tensor network;
in the one-dimensional case this reduces immediately to the matrix multiplication
of an MPS. For a graphical representation, see figure 7.

The attractive feature of this ansatz is the following: imagine a vertical cut
through a system of size L × L. In a PEPS, this will cut L legs of dimension D
each. This allows for DL configurations. The maximum amount of entanglement
across the cut that can be encoded is given by the logarithm as L log D; this
means that it is proportional to the surface and hence the area law for gapped
two-dimensional systems is immediately obeyed, indicating that this is a valid
ansatz class in two dimensions.

It should be remarked that the concept of a TNS is much more general than
just a set of tensors reflecting the underlying lattice structure. The TNS can also
encode hierarchy of scales and make use of disentanglers to keep descriptions as
efficient as possible, as is done by the multi-scale entanglement renormalization
ansatz (MERA) scheme [30].
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2658 U. Schollwöck

Figure 7. Two-dimensional PEPS tensor network state on a square lattice; each blob corresponds
to a physical site. A bipartioning along the dashed line cuts L legs of dimension D each, leading to
the observance of an area law. The network can also be interpreted as the successive application
of an MPO (in dotted box) to an MPS.

(b) Tensor network algorithms: finding a projected entangled pair states
ground state

At first sight, the solution of two-dimensional quantum ground-state problems
seems immediately at hand. We may also generalize from MPOs to tensor product
operators (TPOs), express a Hamiltonian as a TPO efficiently, and solve the
variational ground-state equation iteratively as in one dimension, varying one
tensor after another while keeping all others fixed.

The problems that occur are twofold: (i) the contraction of the tensor network
can only be approximate, never exact as in the one-dimensional case and (ii)
numerical stability is an issue as orthonormalization properties are lost. The first
is immediately obvious if one tries to contract two tensors versus two matrices:
the product of two matrices is again a matrix,

∑
j MijMjk = Mik ; however, the

contraction of two 4-leg tensors over one leg produces one 6-leg tensor. This
can be turned into an exact mathematical statement that the contraction of a
two-dimensional tensor network is indeed an non-deterministic polynomial time
hard problem, i.e. impossible on a classical computer. Approximation schemes,
therefore, have to be involved. One example would be to read a PEPS as a
succession of rows of tensors applied to an MPS at the bottom end, to be
completed by an MPS at the top end. The tensor rows can be interpreted
as MPOs and we would then have a succession of MPO–MPS contractions;
these lead to a multiplicative growth of bond dimensions, which is checked
by an MPS compression algorithm. But this is obviously only approximate.
The second problem is less fundamental, but as annoying. In our exposition
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of one-dimensional DMRG, we have made extensive use of the left- and right-
normalizability of MPSs. But this was only possible because we considered open
boundary conditions; for a ring (periodic boundary conditions), there is no
separate left- and right-normalization. One immediate consequence is that the
eigenproblem of the DMRG turns into a generalized eigenproblem, Hv = lNv,
whose numerical stability depends on the condition number of N , which can turn
out to be large. In a two-dimensional system, even with open boundary conditions,
any tensor singled out for variational optimization generates a ring-like structure
of tensors, implying potential numerical instability.

Let me conclude this outlook on two dimensions by a general statement on
TNSs. As all approximative methods, they have some built-in bias. In the case of
MPSs and TNSs, it is their preference for low-entanglement states. If the accuracy
is not very high, and the energy resolution therefore not very good, among
very close-lying low-energy states those with less entanglement will be preferred,
which might bias to the wrong kind of ground state, e.g. a fixed singlet pattern
over spin-liquid-like fluctuating ground states. In one-dimensional MPS (DMRG)
applications, D can nowadays be pushed to sizes of 10 000 or so, resolving energies
down to machine precision, and this bias does not seem to create serious problems.
In two-dimensional applications, where current dimensions are very small, this
issue is potentially much more severe!

4. Outlook

Another important extension of the DMRG I have completely omitted is the
extension to the time domain, i.e. the simulation of quantum dynamics close and
far from equilibrium. There are a variety of methods, all based on Vidal’s insight
that time evolutions of MPSs can be done very efficiently [31–35], which have
given rise to numerous successful applications. Here, the current effort is mainly
to try to extend the range of such simulations. In ground-state calculations, in
one dimension, essentially all algorithmic questions of interest have been settled
satisfactorily; in two dimensions, a sober assessment would indicate that at the
moment, the best PEPS results do not yet significantly exceed the results of other
methods, and the road to higher accuracies and higher stability seems very steep,
but probably not hopeless.
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