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Abstract—The Tall-Skinny QR (TSQR) algorithm is more
communication efficient than the standard Householder al-
gorithm for QR decomposition of matrices with many more
rows than columns. However, TSQR produces a different
representation of the orthogonal factor and therefore requires
more software development to support the new representation.
Further, implicitly applying the orthogonal factor to the trailing
matrix in the context of factoring a square matrix is more com-
plicated and costly than with the Householder representation.

We show how to perform TSQR and then reconstruct the
Householder vector representation with the same asymptotic
communication efficiency and little extra computational cost.
We demonstrate the high performance and numerical stability
of this algorithm both theoretically and empirically. The new
Householder reconstruction algorithm allows us to design more
efficient parallel QR algorithms, with significantly lower la-
tency cost compared to Householder QR and lower bandwidth
and latency costs compared with Communication-Avoiding QR
(CAQR) algorithm. As a result, our final parallel QR algorithm
outperforms ScaLAPACK and Elemental implementations of
Householder QR and our implementation of CAQR on the
Hopper Cray XE6 NERSC system. We also provide algorithmic
improvements to the ScaLAPACK and CAQR algorithms.

I. INTRODUCTION

Because of the rising costs of communication

(i.e., data movement) relative to computation, so-

called communication-avoiding algorithms—ones that

perform roughly the same computation as alternatives

but significantly reduce communication—often run with

reduced running times on today’s architectures. In particular,

the standard algorithm for computing the QR decomposition

of a tall and skinny matrix (one with many more rows than

columns) is often bottlenecked by communication costs. A

more recent algorithm known as Tall-Skinny QR (TSQR) is

presented in [1] (the ideas go back to [2]) and overcomes

this bottleneck by reformulating the computation. In fact,

the algorithm is communication optimal, attaining the lower

bound for communication costs of QR decomposition (up

to a logarithmic factor in the number of processors) [3]. Not

only is communication reduced in theory, but the algorithm

has been demonstrated to perform better on a variety of

architectures, including multicore processors [4], graphics

processing units [5], and distributed-memory systems [6].

The standard algorithm for QR decomposition, which

is implemented in LAPACK [7], ScaLAPACK [8], and

Elemental [9] is known as Householder-QR (given below

as Algorithm 1). For tall and skinny matrices, the algorithm

works column-by-column, computing a Householder vector

and applying the corresponding transformation for each

column in the matrix. When the matrix is distributed across a

parallel machine, this requires one parallel reduction per col-

umn. The TSQR algorithm (given below as Algorithm 2), on

the other hand, performs only one reduction during the en-

tire computation. Therefore, TSQR requires asymptotically

less inter-processor synchronization than Householder-QR

on parallel machines (TSQR also achieves asymptotically

higher cache reuse on sequential machines).

Computing the QR decomposition of a tall and skinny

matrix is an important kernel in many contexts, including

standalone least squares problems, eigenvalue and singular

value computations, and Krylov subspace and other iterative

methods. In addition, the tall and skinny factorization is

a standard building block in the computation of the QR

decomposition of general (not necessarily tall and skinny)

matrices. In particular, most algorithms work by factoring a

tall and skinny panel of the matrix, applying the orthogonal

factor to the trailing matrix, and then continuing on to the

next panel. Although Householder-QR is bottlenecked by

communication in the panel factorization, it can apply the

orthogonal factor as an aggregated Householder transforma-

tion efficiently, using matrix multiplication [10].

The Communication-Avoiding QR (CAQR) [1] algorithm

uses TSQR to factor each panel of a general matrix. One

difficulty faced by CAQR is that TSQR computes an or-

thogonal factor that is implicitly represented in a different

format than that of Householder-QR. While Householder-

QR represents the orthogonal factor as a set of Householder

vectors (one per column), TSQR computes a tree of smaller

sets of Householder vectors (though with the same total

number of nonzero parameters). In CAQR, this difference

in representation implies that the trailing matrix update is

done using the implicit tree representation rather than matrix

multiplication as possible with Householder-QR. From a

software engineering perspective, this means writing and

tuning more complicated code. Furthermore, from a per-

formance perspective, the the trailing matrix update within

CAQR is less communication efficient than the update within

Householder-QR by a logarithmic factor in the number of
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processors.

Building on a method introduced by Yamamoto [11], we

show that the standard Householder vector representation

may be recovered from the implicit TSQR representation

for roughly the same cost as the TSQR itself. The key

idea is that the Householder vectors that represent an or-

thonormal matrix can be computed via LU decomposition

(without pivoting) of the orthonormal matrix subtracted from

a diagonal sign matrix. We prove that this reconstruction is

as numerically stable as Householder-QR (independent of

the matrix condition number), and validate this proof with

experimental results.

This reconstruction method allows us to get the best

of TSQR algorithm (avoiding synchronization) as well as

the best of the Householder-QR algorithm (efficient trailing

matrix updates via matrix multiplication). By obtaining

Householder vectors from the TSQR representation, we can

logically decouple the block size of the trailing matrix

updates from the number of columns in each TSQR and

use two levels of aggregation of Householder vectors. This

abstraction makes it possible to optimize panel factoriza-

tion and the trailing matrix updates independently. Our

resulting parallel implementation outperforms ScaLAPACK,

Elemental, and a binary-tree CAQR implementation on the

Hopper Cray XE6 platform at NERSC. While we do not

experimentally study sequential performance, we expect our

algorithm will also be beneficial in this setting, due to the

cache efficiency gained by using TSQR.

Two other contributions of the paper include improve-

ments to the Householder QR and CAQR algorithms for

square matrices. We employ the two-level aggregation tech-

nique within Householder QR to alleviate a memory band-

width bottleneck (see Section IV-C), and we use a more

efficient trailing matrix update within CAQR that improves

both the computation and communication costs of that

algorithm (see Section IV-D). Both optimizations lead to

significant performance improvement for the two algorithms.

II. PERFORMANCE COST MODEL

In this section, we detail our algorithmic performance

cost model for parallel execution on p processors. We will

use the α-β-γ model which expresses algorithmic costs in

terms of computation and communication costs, the latter

being composed of a bandwidth cost as well as a latency

cost. We assume the cost of a message of size w words

is α + βw, where α is the per-message latency cost and

β is the per-word bandwidth cost. We let γ be the cost per

floating point operation. We ignore the network topology and

measure the costs in parallel, so that the cost of two disjoint

pairs of processors communicating the same-sized message

simultaneously is the same as that of one message. We

also assume that two processors can exchange equal-sized

messages simultaneously, but a processor can communicate

with only one other processor at a time.

Our algorithmic analysis will depend on the costs of col-

lective communication, particularly broadcasts, reductions,

and all-reductions, Using recursive doubling/halving or

pipelined broadcast algorithms [12], [13], [14] the cost of

an array broadcast of length w ≥ p is

α · log p+ β · p− 1

p
w (1)

(reduce-scatter also incurs a computational cost of γ · ((p−
1)/p)w). Since a broadcast can be performed with scatter

and all-gather, a reduction can be performed with reduce-

scatter and gather, and an all-reduction can be performed

with reduce-scatter and all-gather, the communication costs

of those collectives for large arrays are twice that of Equa-

tion (1).

III. PREVIOUS WORK

We distinguish between two types of QR factorization

algorithms. We call an algorithm that distributes entire rows

of the matrix to processors a 1D algorithm. Such algorithms

are often used for tall and skinny matrices. Algorithms

that distribute the matrix across a 2D grid of pr × pc
processors are known as 2D algorithms. Many right-looking

2D algorithms for QR decomposition of nearly square

matrices divide the matrix into column panels and work

panel-by-panel, factoring the panel with a 1D algorithm

and then updating the trailing matrix. We consider two

such existing algorithms in this section: 2D-Householder-

QR (using Householder-QR) and CAQR (using TSQR).

A. Householder-QR
We first present Householder-QR in Algorithm 1, fol-

lowing [15] so that each Householder vector has a unit

diagonal entry. We use LAPACK [7] notation for the scalar

quantities.1 However, we depart from the LAPACK code in

that there is no check for a zero norm of a subcolumn. We

present Algorithm 1 in Matlab-style notation as a sequential

algorithm. The algorithm works column-by-column, com-

puting a Householder vector and then updating the trailing

matrix to the right. The Householder vectors are stored in

an m × b lower triangular matrix Y . Note that we do not

include τ as part of the output because it can be recomputed

from Y .
While the algorithm works for general m and n, it is most

commonly used when m� n, such as a panel factorization

within a square QR decomposition. In LAPACK terms, this

algorithm corresponds to geqr2 and is used as a subroutine

in geqrf. In this case, we also compute an upper triangular

matrix T so that

Q =

n∏
i=1

(I − τiyiy
T
i ) = I − Y TY T ,

which allows the application of QT to the trailing matrix

to be done efficiently using matrix multiplication. Com-

puting T is done in LAPACK with larft but can also

be computed from Y TY by solving the equation Y TY =
T−1 + T−T for T−1 (since Y TY is symmetric and T−1

is triangular, the off-diagonal entries are equivalent and the

diagonal entries differ by a factor of 2) [16].

1This notation is not to be confused with the communication cost model
given in Equation (1).
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Algorithm 1 [Y,R] = Householder-QR(A)

Require: A is m× b
1: for i = 1 to b do

% Compute the Householder vector
2: α = A(i, i), β = ‖A(i:m, i)‖2
3: if α > 0 then
4: β = −β
5: end if
6: A(i, i) = β, τ(i) = β−α

β

7: A(i+1:m, i) = 1
α−β

·A(i+1:m, i)
% Apply the Householder transformation to the trailing matrix

8: z = τ(i) · [A(i, i+1:b) +A(i+1:m, i)T ·A(i+1:m, i+1:b)]

9: A(i+1:m, i+1:b) = A(i+1:m, i+1:b)−A(i+1:m, i) · z
10: end for
Ensure: A =

(∏n
i=1(I − τiyiy

T
i )

)
R

Ensure: R overwrites the upper triangle and Y (the Householder
vectors) has implicit unit diagonal and overwrites the strict
lower triangle of A; τ is an array of length b with τi =
2/(yTi yi)

1) 1D Algorithm: We will make use of Householder-

QR as a sequential algorithm, but there are parallelizations

of the algorithm in libraries such as ScaLAPACK [8] and

Elemental [9] against which we will compare our new ap-

proach. Assuming a 1D distribution across p processors, the

parallelization of Householder-QR (Algorithm 1) requires

communication at lines 2 and 8, both of which can be

performed using an all-reduction. Because these steps occur

for each column in the matrix, the total latency cost of the

algorithm is 2b log p. This synchronization cost is a potential

parallel scaling bottleneck, since it grows with the number

of columns of the matrix and does not decrease with the

number of processors. The algorithm also performs 2mb2/p
flops and communicates (b2/2) log p words.

2) 2D Algorithm: In the context of a 2D algorithm, in

order to perform an update with the computed Householder

vectors, we must also compute the T matrix from Y in

parallel. The leading order cost of computing T−1 from

Y TY is mb2/p flops plus the cost of reducing a symmetric

b×b matrix, α · log p+β ·b2/2; note that the communication

costs are lower order terms compared to computing Y . We

present the costs of parallel Householder-QR in the first row

of Table I, combining the costs of Algorithm 1 with those

of computing T .

We refer to the 2D algorithm that uses Householder-QR

as the panel factorization as 2D-Householder-QR. In ScaLA-

PACK terms, this algorithm corresponds to pxgeqrf. The

overall cost of 2D-Householder-QR, which includes panel

factorizations and trailing matrix updates, is given to leading

order by

γ ·
(
6mnb− 3n2b

2pr
+

n2b

2pc
+

2mn2 − 2n3/3

p

)
+

β ·
(
nb log pr +

2mn− n2

pr
+

n2

pc

)
+

α ·
(
2n log pr +

2n

b
log pc

)
.

If we pick pr = pc =
√
p (assuming m ≈ n) and b =

n/(
√
p log p) then we obtain the leading order costs

γ · (2mn2 − 2n3/3)/p+ β · (mn+ n2)/
√
p+ α · n log p.

Note that these costs match those of [1], [8], with exceptions

coming from the use of more efficient collectives. The

choice of b is made to preserve the leading constants of

the parallel computational cost. We present the costs of 2D-

Householder-QR in the first row of Table II.

B. Communication-Avoiding QR

In this section we present parallel Tall-Skinny QR (TSQR)

[1, Algorithm 1] and Communication-Avoiding QR (CAQR)

[1, Algorithm 2], which are algorithms for computing a QR

decomposition that are more communication efficient than

Householder-QR, particularly for tall and skinny matrices.

1) 1D Algorithm (TSQR): We present a simplified ver-

sion of TSQR in Algorithm 2: we assume the number of

processors is a power of two and use a binary reduction tree

(TSQR can be performed with any tree). Note also that we

present a reduction algorithm rather than an all-reduction

(i.e., the final R resides on only one processor at the end of

the algorithm). TSQR assumes the tall-skinny matrix A is

distributed in block row layout so that each processor owns

a (m/p) × n submatrix. After each processor computes a

local QR factorization of its submatrix (line 1), the algorithm

works by reducing the p remaining n × n triangles to one

final upper triangular R = QTA (lines 2–10). The Q that

triangularizes A is stored implicitly as a tree of sets of

Householder vectors, given by {Yi,k}. In particular, {Yi,k}
is the set of Householder vectors computed by processor i
at the kth level of the tree. The ith leaf of tree, Yi,0 is the

set of Householder vectors which processor i computes by

doing a local QR on its part of the initial matrix A.

In the case of a binary tree, every internal node of the

tree consists of a QR factorization of two stacked b × b
triangles (line 6). This sparsity structure can be exploited,

saving a constant factor of computation compared to a QR

factorization of a dense 2b× b matrix. In fact, as of version

3.4, LAPACK has subroutines for exploiting this and similar

sparsity structures (tpqrt). Furthermore, the Householder

vectors generated during the QR factorization of stacked

triangles have similar sparsity; the structure of the Yi,k for

k > 0 is an identity matrix stacked on top of a triangle.

The costs and analysis of TSQR are given in [1], [17]:

γ ·
(
2mb2

p
+

2b3

3
log p

)
+ β ·

(
b2

2
log p

)
+ α · log p.

We tabulate these costs in the second row of Table I. We

note that the TSQR inner tree factorizations require an extra

computational cost O(b3 log p) and a bandwidth cost of

O(b2 log p). Also note that in the context of a 2D algorithm,

using TSQR as the panel factorization implies that there is

no b × b T matrix to compute; the update of the trailing

matrix is performed differently.
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Algorithm 2 [{Yi,k}, R] = TSQR(A)

Require: Number of processors is p and i is the processor index
Require: A is m × b matrix distributed in block row layout; Ai

is processor i’s block
1: [Yi,0, R̄i] = Householder-QR(Ai)
2: for k = 1 to �log p� do
3: if i ≡ 0 mod 2k and i+ 2k−1 < p then
4: j = i+ 2k−1

5: Receive R̄j from processor j

6: [Yi,k, R̄i] = Householder-QR

([
R̄i

R̄j

])

7: else if i ≡ 2k−1 mod 2k then
8: Send R̄i to processor i− 2k−1

9: end if
10: end for
11: if i = 0 then
12: R = R̄0

13: end if
Ensure: A = QR with Q implicitly represented by {Yi,k}
Ensure: R is stored by processor 0 and Yi,k is stored by processor

i

2) 2D Algorithm (CAQR): The 2D algorithm that uses

TSQR for panel factorizations is known as CAQR. In order

to update the trailing matrix within CAQR, the implicit

orthogonal factor computed from TSQR needs to be applied

as a tree in the same order as it was computed. See [1,

Algorithm 2] for a description of this process, or see [18,

Algorithm 4] for pseudocode that matches the binary tree

in Algorithm 2. We refer to this application of implicit

QT as Apply-TSQR-QT . The algorithm has the same tree

dependency flow structure as TSQR but requires a bidi-

rectional exchange between paired nodes in the tree. We

note that in internal nodes of the tree it is possible to

exploit the additional sparsity structure of Yi,k (an identity

matrix stacked on top of a triangular matrix), which our

implementation does via the use of the LAPACK v3.4+

routine tpmqrt.

Further, since A is m × n and intermediate values of

rows of A are communicated, the trailing matrix update

costs more than TSQR when n > b. In the context of

CAQR on a square matrix, Apply-TSQR-QT is performed

on a trailing matrix with n ≈ m columns. The extra

work in the application of the inner leaves of the tree

is proportional to O(n2b log(p)/
√
p) and bandwidth cost

proportional to O(n2 log(p)/
√
p). Since the cost of Apply-

TSQR-QT is almost leading order in CAQR, it is desirable

in practice to optimize the update routine. However, the tree

dependency structure complicates this manual developer or

compiler optimization task.
The overall cost of CAQR is given to leading order by

γ ·
(
6mnb− 3n2b

2pr
+

(
4nb2

3
+

3n2b

2pc

)
log pr+

6mn2 − 2n3

3p

)

+ β ·
((

nb

2
+

n2

pc

)
log pr +

2mn− n2

pr

)

+ α ·
(
3n

b
log pr +

4n

b
log pc

)
.

See [1] for a discussion of these costs and [17] for detailed

analysis. Note that the bandwidth cost is slightly lower here
due to the use of more efficient broadcasts. If we pick pr =
pc =

√
p (assuming m ≈ n) and b = n√

p log2 p
then we

obtain the leading order costs

γ·
(
2mn2 − 2n3/3

p

)
+β·

(
2mn+ n2 log p√

p

)
+α·

(
7

2

√
p log3 p

)
.

Again, we choose b to preserve the leading constants of the

computational cost. Note that b needs to be chosen smaller

here than in Section III-A2 due to the costs associated with

Apply-TSQR-QT .

It is possible to reduce the costs of Apply-TSQR-QT

further using ideas from efficient recursive doubling/halving

collectives; see Section IV-D for more details. Another

important practical optimization for CAQR is pipelining the

trailing matrix updates [19], though we do not consider

this idea here as it cannot be applied with the Householder

reconstruction approach.

3) Constructing Explicit Q from TSQR: In many use

cases of QR decomposition, an explicit orthogonal factor

is not necessary; rather, we need only the ability to apply

the matrix (or its transpose) to another matrix, as done in

the previous section. For our purposes (see Section IV), we

will need to form the explicit m × b orthonormal matrix

from the implicit tree representation.2 Though it is not

necessary within CAQR, we describe it here because it is

a known algorithm (see [20, Figure 4]) and the structure of

the algorithm is very similar to TSQR.

Algorithm 3 presents the method for constructing the

m×b matrix Q by applying the (implicit) square orthogonal

factor to the first b columns of the m ×m identity matrix.

Note that while we present Algorithm 3 assuming a binary

tree, any tree shape is possible, as long as the implicit Q
is computed using the same tree shape as TSQR. While the

nodes of the tree are computed from leaves to root, they will

be applied in reverse order from root to leaves. Note that in

order to minimize the computational cost, the sparsity of the

identity matrix at the root node and the sparsity structure of

{Yi,k} at the inner tree nodes is exploited.

Since the communicated matrices Q̄j are triangular just as

R̄j was triangular in the TSQR algorithm, Construct-TSQR-

Q incurs the exact same computational and communication

costs as TSQR. So, we can reconstruct the unique part of

the Q matrix from the implicit form given by TSQR for the

same cost as the TSQR itself.

C. Yamamoto’s Basis-Kernel Representation

The main goal of this work is to combine Householder-

QR with CAQR; Yamamoto [11] proposes a scheme to

achieve this. As described in Section III-A, 2D-Householder-

QR suffers from a communication bottleneck in the panel

factorization. TSQR alleviates that bottleneck but requires a

more complicated (and slightly less efficient) trailing matrix

update. Motivated in part to improve the performance and

programmability of a hybrid CPU/GPU implementation,

2In LAPACK terms, constructing (i.e., generating) the orthogonal factor
when it is stored as a set of Householder vectors is done with orgqr.
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Algorithm 3 Q = Construct-TSQR-Q({Yi,k})
Require: Number of processors is p and i is the processor index
Require: {Yi,k} is computed by Algorithm 2 so that Yi,k is stored

by processor i
1: if i = 0 then
2: Q̄0 = Ib
3: end if
4: for k = �log p� down to 1 do
5: if i ≡ 0 mod 2k and i+ 2k−1 < p then
6: j = i+ 2k−1

7:

[
Q̄i

Q̄j

]
= Apply-Householder-Q

(
Yi,k,

[
Q̄i

0

])

8: Send Q̄j to processor j
9: else if i ≡ 2k−1 mod 2k then

10: Receive Q̄i from processor i− 2k−1

11: end if
12: end for
13: Qi = Apply-Q-to-Triangle

(
Yi,0,

[
Q̄i

0

])

Ensure: Q is orthonormal m× b matrix distributed in block row
layout; Qi is processor i’s block

Yamamoto suggests computing a representation of the or-

thogonal factor that triangularizes the panel that mimics the

representation in Householder-QR.

As described by Sun and Bischof [21], there are many so-

called “basis-kernel” representations of an orthogonal ma-

trix. For example, the Householder-QR algorithm computes

a lower triangular matrix Y such that A = (I − Y TY T
1 )R,

so that

Q = I − Y TY T = I −
[
Y1

Y2

]
T
[
Y T
1 Y T

2

]
. (2)

Here, Y is called the “basis” and T is called the “kernel”

in this representation of the square orthogonal factor Q.

However, there are many such basis-kernel representations if

we do not restrict Y and T to be lower and upper triangular

matrices, respectively.

Yamamoto [11] chooses a basis-kernel representation that

is easy to compute. For an m×b matrix A, let A =

[
Q1

Q2

]
R

where Q1 and R are b × b. Then define the basis-kernel

representation

Q = I − Ỹ T̃ Ỹ T = I −
[
Q1−I
Q2

] [
I−Q1

]−T [
(Q1−I)T QT

2

]
,

(3)

where I−Q1 is assumed to be nonsingular. It can be easily

verified that QTQ = I and QTA =

[
R
0

]
; in fact, this is the

representation suggested and validated by [22, Theorem 3].

Note that both the basis and kernel matrices Ỹ and T̃ are

dense.

The main advantage of basis-kernel representations is that

they can be used to apply the orthogonal factor (or its

transpose) very efficiently using matrix multiplication. In

particular, the computational complexity of applying QT

using any basis-kernel is the same to leading order, assuming

Y has the same dimensions as A and m � b. Thus, it

is not necessary to reconstruct the Householder vectors;

from a computational perspective, finding any basis-kernel

representation of the orthogonal factor computed by TSQR

will do. Note also that in order to apply QT with the

representation in Equation (3), we need to apply the inverse

of I −Q1, so we need to perform an LU decomposition of

the b×b matrix and then apply the inverses of the triangular

factors using triangular solves.

The assumption that I−Q1 is nonsingular can be dropped

by replacing I with a diagonal sign matrix S chosen so that

S − Q1 is nonsingular [23]; in this case the representation

becomes

QS = I−Ỹ T̃ Ỹ T = I−
[
Q1−S
Q2

]
S
[
S−Q1

]−T [
(Q1−S)T QT

2

]
.

(4)

Yamamoto’s approach is very closely related to TSQR-

HR (Algorithm 5), presented in Section IV. We compare

the methods in Section IV-A.

IV. NEW ALGORITHMS

We first present our main contribution, a parallel algorithm

that performs TSQR and then reconstructs the Householder

vector representation from the TSQR representation of the

orthogonal factor. We then show that this reconstruction

algorithm may be used as a building block for more efficient

2D QR algorithms. In particular, the algorithm is able to

combine two existing approaches for 2D QR factorizations,

leveraging the efficiency of TSQR in panel factorizations and

the efficiency of Householder-QR in trailing matrix updates.

While Householder reconstruction adds some extra cost to

the panel factorization, we show that its use in the 2D

algorithm reduces overall communication compared to both

2D-Householder-QR and CAQR.

A. TSQR with Householder Reconstruction

The basic steps of our 1D algorithm include performing

TSQR, constructing the explicit tall-skinny Q factor, and

then computing the Householder vectors corresponding to

Q. The key idea of our reconstruction algorithm is that per-

forming Householder-QR on an orthonormal matrix Q is the

same as performing an LU decomposition on Q−S, where S
is a diagonal sign matrix corresponding to the sign choices

made inside the Householder-QR algorithm. This claim is

proved explicitly in Lemma V.2. Informally, ignoring signs,

if Q = I−Y TY T
1 with Y a matrix of Householder vectors,

then Y · (−TY T
1 ) is an LU decomposition of Q − I since

Y is unit lower triangular and TY T
1 is upper triangular.

In this section we present Modified-LU as Algorithm

4, which can be applied to any orthonormal matrix (not

necessarily one obtained from TSQR). Ignoring lines 1, 3,

and 4, it is exactly LU decomposition without pivoting. Note

that with the choice of S, no pivoting is required since

the effective diagonal entry will be at least 1 in absolute

value and all other entries in the column are bounded by

1 (the matrix is orthonormal).3 This holds true throughout

the entire factorization because the trailing matrix remains

orthonormal, which we prove within Lemma V.2.

3We use the convention sgn(0) = 1.
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Flops Words Messages
Householder-QR 3mb2

p
− 2b3

3p
b2

2
log p 2b log p

TSQR 2mb2

p
+ 2b3

3
log p b2

2
log p log p

TSQR-HR 5mb2

p
+ 4b3

3
log p b2 log p 4 log p

Table I: Costs of QR factorization of tall-skinny m × b matrix
distributed over p processors in 1D fashion. We assume these
algorithms are used as panel factorizations in the context of a 2D
algorithm applied to an m×n matrix. Thus, costs of Householder-
QR and TSQR-HR include the costs of computing T .

Parallelizing this algorithm is straightforward. Since m ≥
b and no pivoting is required, the Modified-LU algorithm

can be applied on one processor to the top b× b block. The

rest of the lower triangular factor is updated with a triangular

solve involving the upper triangular factor. After the upper

triangular factor has been broadcast to all processors, the

triangular solve is performed in parallel. Thus, the cost of

Algorithm 4 is given by

γ ·
(
mb2

p
+

2b3

3

)
+ β · b2 + α · 2 log p.

Algorithm 4 [L,U, S] = Modified-LU(Q)

Require: Q is m× b orthonormal matrix
1: S = 0
2: for i = 1 to b do
3: S(i, i) = − sgn(Q(i, i))
4: Q(i, i) = Q(i, i)− S(i, i)

% Scale ith column of L by diagonal element
5: Q(i+1:m, i) = 1

Q(i,i)
·Q(i+1:m, i)

% Perform Schur complement update
6: Q(i+1:m, i+1:b) = Q(i+1:m, i+1:b)−Q(i+1:m, i)·Q(i, i+1:b)

7: end for
Ensure: U overwrites the upper triangle and L has implicit unit

diagonal and overwrites the strict lower triangle of Q; S is
diagonal so that Q− S = LU

Given the algorithms of the previous sections, we now

present the full approach for computing the QR decompo-

sition of a tall-skinny matrix using TSQR and Householder

reconstruction. That is, in this section we present an algo-

rithm such that the format of the output of the algorithm

is identical to that of Householder-QR. However, we argue

that the communication costs of this approach are much less

than those of performing Householder-QR.

The method, given as Algorithm 5, is to perform TSQR

(line 1), construct the tall-skinny Q factor explicitly (line

2), and then compute the Householder vectors that represent

that orthogonal factor using Modified-LU (line 3). The R
factor is computed in line 1 and the Householder vectors (the

columns of Y ) are computed in line 3. An added benefit of

the approach is that the triangular T matrix, which allows

for block application of the Householder vectors, can be

computed very cheaply. That is, a triangular solve involving

the upper triangular factor from Modified-LU computes the

T so that A = (I − Y TY T
1 )R. To compute T directly

from Y (as is necessary if Householder-QR is used) requires

O(nb2) flops; here the triangular solve involves O(b3) flops.

Our approach for computing T is given in line 4, and

line 5 ensures sign agreement between the columns of the

(implicitly stored) orthogonal factor and rows of R.

Algorithm 5 [Y, T,R] = TSQR-HR(A)

Require: A is m× b matrix distributed in block row layout
1: [{Yi,k}, R̃] = TSQR(A)
2: Q = Construct-TSQR-Q({Yi,k})
3: [Y, U, S] = Modified-LU(Q)
4: T = −USY −T

1

5: R = SR̃
Ensure: A = (I − Y TY T

1 )R, where Y is m× b and unit lower
triangular, Y1 is top b× b block of Y , and T and R are b× b
and upper triangular

On p processors, TSQR-HR(A) where A is m-by-b incurs

the following costs (ignoring lower order terms):

γ ·
(
5mb2

p
+

4b3

3
log p

)
+ β · (b2 log p)+ α · (4 log p) ,

which is roughly twice the cost of TSQR plus the cost of

Modified-LU.

Note that the LU factorization required in Yamamoto’s

approach (see Section III-C) is equivalent to performing

Modified-LU(−Q1). In Algorithm 5, the Modified-LU algo-

rithm is applied to an m×b matrix rather than to only the top

b×b block; since no pivoting is required, the only difference

is the update of the bottom m − b rows with a triangular

solve. Thus it is not hard to see that, ignoring signs, the

Householder basis-kernel representation in Equation (2) can

be obtained from the representation given in Equation (3)

with two triangular solves: if the LU factorization gives

I − Q1 = LU , then Y = Ỹ U−1 and T = UL−T . Indeed,

performing these two operations and handling the signs

correctly gives Algorithm 5.

While Yamamoto’s approach avoids performing the trian-

gular solve on Q2, it still involves performing both TSQR

and Construct-TSQR-Q. Avoiding the triangular solve saves

20% of the arithmetic of the panel factorization with House-

holder reconstruction, though we found in our performance

experiments that the triangular solve accounts for only about

10% of the running time (mostly due to the broadcast of the

triangular factor).

The main advantages of TSQR-HR over Yamamoto’s al-

gorithm are that the storage of the basis-kernel representation

is more compact (since Y is unit lower triangular and T is

upper triangular) and that this basis-kernel representation is

backward-compatible with (Sca)LAPACK and other libraries

using the compact WY representation [10], offering greater

performance portability.

B. CAQR-HR

We refer to the 2D algorithm that uses TSQR-HR for

panel factorizations as CAQR-HR. Because Householder-

QR and TSQR-HR generate the same representation as

output of the panel factorization, the trailing matrix update

can be performed in exactly the same way. Thus, the
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Algorithm 6 [Y, T,R] = CAQR-HR(A)

Require: A is m×n and distributed block-cyclically on p = pr ·pc
processors with block size b, so that each b× b block Aij is
owned by processor Π(i, j) = (i mod pr) + pr · (j mod pc)

1: for i = 0 to n/b− 1 do
% Compute TSQR and reconstruct Householder representation
using column of pr processors

2:
[
Yi:m/b−1,i, Ti, Rii

]
= Hh-Recon-TSQR(Ai:m/b−1,i)

% Update trailing matrix using all p processors
3: Π(i, i) broadcasts Ti to all other processors
4: for r ∈ [i,m/b− 1], c ∈ [i+ 1, n/b− 1] do in parallel
5: Π(r, i) broadcasts Yri across proc. row Π(r, :)
6: Π(r, c) computes W̃rc = Y T

ri ·Arc

7: Allreduce Wc=
∑

r W̃rc along proc. column Π(:, c)
8: Π(r, c) computes Arc = Arc − Yri · TT

i ·Wc

9: Set Ric = Aic

10: end for
11: end for
Ensure: A =

(∏n
i=1(I − Y:,iTiY

T
:,i)

)
R

Flops Words Messages
2D-Householder-QR

2mn2−2n3/3
p

2mn+n2/2√
p

n log p

CAQR
2mn2−2n3/3

p
2mn+n2 log p√

p
7
2

√
p log3 p

CAQR-HR
2mn2−2n3/3

p
2mn+n2/2√

p
6
√
p log2 p

Scatter-Apply CAQR
2mn2−2n3/3

p
2mn+n2/2√

p
7
√
p log2 p

Table II: Costs of QR factorization of m×n matrix distributed over
p processors in 2D fashion. Here we assume a square processor
grid (pr = pc). We also choose block sizes for each algorithm
independently to ensure the leading order terms for flops are
identical.

only difference between 2D-Householder-QR and CAQR-

HR, presented in Algorithm 6, is the subroutine call for the

panel factorization (line 2).
The overall costs of CAQR-HR are given to leading order

by

γ ·
(
10mnb− 5n2b

2pr
+

4nb2

3
log pr +

n2b

2pc
+

2mn2 − 2n3/3

p

)
+

β ·
(
nb log pr +

2mn− n2

pr
+

n2

pc

)
+

α ·
(
8n

b
log pr +

4n

b
log pc

)
.

See [18] for full derivation of these costs. If we pick pr =
pc =

√
p (assuming m ≈ n) and b = n√

p log p then we obtain

the leading order costs

γ ·
(
2mn2 − 2n3/3

p

)
+β ·

(
2mn+ n2/2√

p

)
+α · (6√p log2 p

)
,

shown in the third row of Table II.

Comparing the leading order costs of CAQR-HR with the

existing approaches, we note again the O(n log p) latency

cost incurred by the 2D-Householder-QR algorithm. CAQR

and CAQR-HR eliminate this synchronization bottleneck

and reduce the latency cost to be independent of the number

of columns of the matrix. Further, both the bandwidth and

latency costs of CAQR-HR are factors of O(log p) lower

than CAQR (when m ≈ n). As previously discussed,

CAQR includes an extra leading order bandwidth cost term

(β · n2 log p/
√
p), as well as a computational cost term

(γ · (n2b/pc) log pr) that requires the choice of a smaller

block size and leads to an increase in the latency cost.

C. Two-Level Aggregation

The Householder-QR algorithm attains an efficient trailing

matrix update by aggregating Householder vectors into pan-

els (the compact-WY representation). Further, it is straight-

forward to combine aggregated sets (panels) of Householder

vectors into a larger aggregated form. While it is possible

to aggregate any basis-kernel representation in this way [21,

Corollary 2.8], the Householder form allows for maintaining

trapezoidal structure of the basis and triangular structure of

the kernel (note that Yamamoto’s representation would yield

a block-trapezoidal basis and block-triangular kernel). We

will refer to the aggregation of sets of Householder vectors

as two-level aggregation.

Given the Householder vector reconstruction technique,

two-level aggregation makes it possible to decouple the

block sizes used for the trailing matrix update from the

width of each TSQR. Adding the second blocking parameter

to achieve two-level aggregation is a simple algorithmic

optimization to our 2D algorithm, and does not change

the leading order interprocessor communication costs. This

two-level algorithm is given in full in the technical re-

port [18]; it calls Algorithm 6 recursively on large panels

of the matrix and then performs an aggregated update on

the trailing matrix. While this algorithm does not lower the

interprocessor communication, it lowers the local memory-

bandwidth cost associated with reading the trailing matrix

from memory. This two-level aggregation is analogous to

the two-level blocking technique employed in [24] for LU

factorization, albeit only on a 2D grid of processors. We

also implemented a 2D Householder algorithm with two-

level aggregation, which employs ScaLAPACK to factor

each thin panel. We refer to this algorithm as Two-Level

2D Householder. We note that ScaLAPACK could be easily

modified to use this algorithm with the addition of a second

algorithmic blocking factor. Both of our two-level algorithms

obtained a significant performance improvement over their

single-level aggregated counterparts.

D. Scatter-Apply CAQR

We also found an alternative method for improving the

CAQR trailing matrix update that does not reconstruct the

Householder form. A major drawback with performing the

update via a binary tree algorithm is heavy load imbalance.

This problem may be resolved by exploiting the fact that

each column of the trailing matrix may be updated indepen-

dently and subdividing the columns among more processors

to balance out the work. This can be done with ideal load

balance using a butterfly communication network instead of

a binary tree.

Doing the CAQR trailing matrix update via a butterfly

network requires storing the implicit representation of the

Householder vectors redundantly. We compute the House-

holder vectors redundantly by doing the TSQR via a butterfly

network as done in [25]. Algorithm 7 shows how the trailing
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matrix update can be efficiently computed using a butterfly

communication network, which effectively performs recur-

sive halving on the columns of the trailing matrix, then

recombines the computed updates via an inverse butterfly

network (recursive doubling). We call this algorithm Scatter-

Apply TSQR-QT to emphasize that its structure is analogous

to performing a broadcast via a scatter-allgather algorithm,

which generalizes recursive halving and doubling and lowers

the asymptotic bandwidth cost of a large message broadcast

over a simple binary tree broadcast by a factor of O(log p).
Within the context of a 2D QR implementation, Algorithm 7

would be used for each processor column.
Algorithm 7 reduces the bandwidth and computational

costs of the trailing matrix update by a factor of O(log p),
since these costs are now dominated by the first level of
the butterfly. The leading order costs of a CAQR algorithm
which uses Scatter-Apply TSQR-QT for the trailing matrix
update are

γ ·
(
2mn2 − 2n3/3

p

)
+ β ·

(
2mn+ 2n2

√
p

)
+ α · (7√p log2 p

)
.

We extended Algorithm 7 to a non-power-of-two number of

processes via an additional level of the butterfly, which cuts

to the nearest power-of-two, though there are alternatives

which could be cheaper. An interesting remaining question

is whether pipelined CAQR with flat trees, such as the

algorithms presented in [19] can yield the same improvement

in costs as Algorithm 7.

V. CORRECTNESS AND STABILITY

In order to reconstruct the lower trapezoidal Householder

vectors that constitute an orthonormal matrix (up to column

signs), we can use an algorithm for LU decomposition

without pivoting on an associated matrix (Algorithm 4).

Lemma V.1 shows by uniqueness that this LU decompo-

sition produces the Householder vectors representing the

orthogonal matrix in exact arithmetic. Given the explicit

orthogonal factor, the LU method is cheaper in terms of

both computation and communication than constructing the

vectors via Householder-QR.

Lemma V.1. Given an orthonormal m× b matrix Q, let the
compact QR decomposition of Q given by the Householder-
QR algorithm (Algorithm 1) be

Q =

([
In
0

]
− Y TY T

1

)
S,

where Y is unit lower triangular, Y1 is the top b× b block
of Y , and T is the upper triangular b× b matrix satisfying
T−1 + TT = Y TY . Then S is a diagonal sign matrix, and

Q−
[
S
0

]
has a unique LU decomposition given by

Q−
[
S
0

]
= Y · (−TY T

1 S). (5)

Proof: Since Q is orthonormal, it has full rank and

therefore has a unique QR decomposition with positive

diagonal entries in the upper triangular matrix. This decom-

position is Q = Q · In, so the Householder-QR algorithm

Algorithm 7 [B] = Scatter-Apply TSQR-QT ({Yi,k}, A)
Require: No. of processors p is a power of 2 and i is the processor

index
Require: A is m×n matrix distributed in block row layout; Ai is

processor i’s block; and {Yi,k} is the implicit representation
of b Householder vectors computed via a butterfly TSQR

1: Bi = Apply-Householder-QT (Yi,0, Ai)
2: Let B̄i be the first b rows of Bi

3: for k = 1 to log p do
4: j = 2k� i

2k
	+ (i+ 2k−1 mod 2k)

5: Let B̄i = [B̄i1, B̄i2] where each block is b-by-n/2k

6: if i < j then
7: Swap B̄i2 with B̄j1 from processor j

8:

[
B̄i

B̄k
j1

]
= Apply-Householder-QT

(
Yi,k,

[
B̄i1

B̄j1

])

9: else
10: Swap B̄j2 with B̄i1 from processor j

11:

[
B̄i

B̄k
i2

]
= Apply-Householder-QT

(
Yi,k,

[
B̄i2

B̄j2

])

12: end if
13: end for
14: for k = log p down to 1 do
15: j = 2k� i

2k
	+ (i+ 2k−1 mod 2k)

16: if i < j then
17: Swap B̄k

j1 with B̄j from processor j
18: B̄i = [B̄i, B̄j ]
19: else
20: Swap B̄i with B̄k

i1 from processor j
21: B̄i = [B̄k

i1, B̄
k
i2]

22: end if
23: end for
24: Set the first b rows of Bi to B̄i

Ensure: B = QTA where Q is the orthogonal matrix implicitly
represented by {Yi,k}

must compute a decomposition that differs only by sign.

Thus, S is a diagonal sign matrix. The uniqueness of T is

guaranteed by [21, Example 2.4].

We obtain Equation (5) by rearranging the Householder

QR decomposition. Since Y is unit lower triangular and

T , Y T
1 , and S are all upper triangular, we have an LU

decomposition. Since Y is full column rank and T , Y T
1 ,

and S are all nonsingular, Q −
[
S
0

]
has full column rank

and therefore has a unique LU decomposition with a unit

lower triangular factor.

Unfortunately, given an orthonormal matrix Q, the sign

matrix S produced by Householder-QR is not known, so we

cannot run a standard LU algorithm on Q−
[
S
0

]
. Lemma V.2

shows that by running the Modified-LU algorithm (Algo-

rithm 4), we can cheaply compute the sign matrix S during

the course of the algorithm.

Lemma V.2. In exact arithmetic, Algorithm 4 applied to an
orthonormal m × b matrix Q computes the same House-
holder vectors Y and sign matrix S as the Householder-QR
algorithm (Algorithm 1) applied to Q.

Proof: Consider applying one step of Modified-LU

(Algorithm 4) to the orthonormal matrix Q, where we first

set S11 = − sgn(q11) and subtract it from q11. Note that
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since all other entries of the first column are less than 1

in absolute value and the absolute value of the diagonal

entry has been increased by 1, the diagonal entry is the

maximum entry. Following the LU algorithm, all entries

below the diagonal are scaled by the reciprocal of the

diagonal element: for 2 ≤ i ≤ m,

yi1 =
qi1

q11 + sgn(q11)
, (6)

where Y is the computed lower triangular factor. The Schur

complement is updated as follows: for 2 ≤ i ≤ m and

2 ≤ j ≤ b,

q̃ij = qij − qi1q1j
q11 + sgn(q11)

. (7)

Now consider applying one step of the Householder-QR

algorithm (Algorithm 1). To match the LAPACK notation,

we let α = q11, β = − sgn(α) · ‖q1‖ = − sgn(α), and τ =
β−α
β = 1+α sgn(α), where we use the fact that the columns

of Q have unit norm. Note that β = − sgn(α) = S11, which

matches the Modified-LU algorithm above. The Householder

vector y is computed by setting the diagonal entry to 1 and

scaling the other entries of q1 by 1
α−β = 1

α+sgn(α) . Thus,

computing the Householder vector matches computing the

column of the lower triangular matrix from Modified-LU in

Equation (6) above.

Next, we consider the update of the trailing matrix: Q̃ =
(I − τyyT )Q. Since Q has orthonormal columns, the dot

product of the Householder vector with the jth column is

given by

yT qj =
m∑
i=1

yiqij = q1j +
m∑
i=2

qi1
α+ sgn(α)

qij

= q1j − q11q1j
α+ sgn(α)

=

(
1− α

α+ sgn(α)

)
q1j .

The identity (1 + α sgn(α)) · (1 − α/(α + sgn(α)) = 1
implies τyT qj = q1j . Then the trailing matrix update (2 ≤
i ≤ m and 2 ≤ j ≤ b) is given by

q̃ij = qij − yi(τy
T qj) = qij − qi1q1j

α+ sgn(α)
,

which matches the Schur complement update from

Modified-LU in Equation (7) above.

Finally, consider the jth element of first row of the

trailing matrix (j ≥ 2): q̃1j = q1j − y1(τy
T qj) = 0. Note

that the computation of the first row is not performed in

the Modified-LU algorithm. The corresponding row is not

changed since the diagonal element is Y11 = 1. However,

in the case of Householder-QR, since the first row of the

trailing matrix is zero, and because the Householder transfor-

mation preserves column norms, the updated (m−1)×(b−1)
trailing matrix is itself an orthonormal matrix. Thus, by

induction, the rest of the two algorithms perform the same

computations.

The following theorem shows that not only is Algorithm

5 correct in exact arithmetic, it is a stable computation in

floating point arithmetic. In particular, it proves the norm-

wise backward errors of both the QR factorization and the

orthonormality of the computed Q factor are small and that

they are independent of the condition number of the input

matrix. We use the notation ε to be machine precision.

Theorem V.3. Let R̂ be the computed upper triangular
factor of m× b matrix A obtained via the TSQR algorithm
with p processors using a binary tree (assuming m/p ≥ b),
and let Q̃ = I − Ỹ T̃ Ỹ T

1 and R̃ = SR̂ where Ỹ , T̃ , and S
are the computed factors obtained from TSQR-HR. Then

‖A− Q̃R̃‖F ≤ F1(m, b, p, ε)‖A‖F
and

‖I − Q̃T Q̃‖F ≤ F2(m, b, p, ε)

where F1, F2 = O
((
b3/2(m/p) + b5/2 log p+ b3

)
ε
)

for
b(m/p)ε� 1.

Proof: We give only a sketch here; see [18] for the full

proof. The proof combines the known stability results of

TSQR [26] with proofs of the stability of Modified-LU and

the rest of the computation. The key idea is that applying

Modified-LU to an orthonormal matrix is a very stable

computation: not only is the computed lower triangular

factor bounded, the upper triangular factor can also be tightly

bounded (by a function of the number of columns) using the

properties of orthogonality.

VI. NUMERICAL EXPERIMENTS

In this section we present numerical results of TSQR-HR.

Experiments were conducted on two representative sets of

test matrices. The first set is used to check the stability of

the algorithm on single panels represented by tall and skinny

matrices, while the second set focuses on the factorization

of full matrices panel by panel.

The orthogonality of Q̃ is measured by ‖I − Q̃T Q̃‖2.

The stability of the factorization is also measured by norm-

wise relative backward errors, ‖A− Q̃R̃‖2/‖A‖2. We found

similar results for column-wise relative errors.

A. Tall and Skinny Matrices

In this section, we use matrices which are formed by

A = Q · Rρ, where Q and R are computed via QR

decomposition of an m× b matrix with i.i.d. entries chosen

from a normal distribution. Rρ is obtained by setting the⌊
n
2

⌋
-th diagonal element of an upper triangular matrix R to

a small parameter value ρ. This experimental setup is used

to vary the condition number of the matrix and demonstrate

instability of a related cheaper reconstruction method (see

[18] for details).

As can be seen from Table III, for all test cases both

the orthogonality and factorization errors of are of order

10−15 for TSQR-HR, which is close to ε = 2−52 of double

precision. This result demonstrates the numerical stability

of this approach on tall and skinny matrices. We note that

Yamamoto’s approach provides similar results on these test

cases.
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ρ κ ‖A− Q̃R̃‖2 ‖I − Q̃T Q̃‖2
1e-01 5.1e+02 2.2e-15 9.3e-15
1e-03 5.0e+04 2.2e-15 8.4e-15
1e-05 5.1e+06 2.3e-15 8.7e-15
1e-07 5.0e+08 2.4e-15 1.1e-14
1e-09 5.0e+10 2.3e-15 9.9e-15
1e-11 4.9e+12 2.5e-15 1.0e-14
1e-13 5.0e+14 2.2e-15 8.8e-15
1e-15 5.0e+15 2.4e-15 9.7e-15

Table III: Error of TSQR-HR on tall and skinny matrices (m =
1000, b = 200)

Matrix type κ ‖A− Q̃R̃‖2 ‖I − Q̃T Q̃‖2
A = 2 ∗ rand(m)− 1 2.1e+03 4.3e-15 (256) 2.8e-14 (2)
Golub-Klema-Stewart 2.2e+20 0.0e+00 (2) 0.0e+00 (2)
Break 1 distribution 1.0e+09 1.0e-14 (256) 2.8e-14 (2)
Break 9 distribution 1.0e+09 9.9e-15 (256) 2.9e-14 (2)

UΣV T with exponential distribution 4.2e+19 2.0e-15 (256) 2.8e-14 (2)
The devil’s stairs matrix 2.3e+19 2.4e-15 (256) 2.8e-14 (2)
KAHAN matrix, a trapezoidal matrix 5.6e+56 0.0e+00 (2) 0.0e+00 (2)
Matrix ARC130 from Matrix Market 6.0e+10 8.8e-19 (16) 2.1e-15 (2)
Matrix FS 541 1 from Matrix Market 4.5e+03 5.8e-16 (64) 1.8e-15 (256)
BAART: discretization of Fredholm
integral equation of the first kind

5.2e+18 1.6e-15 (32) 2.9e-14 (2)

DERIV2: second derivative 1.2e+06 2.8e-15 (256) 4.6e-14 (2)
FOXGOOD: severely ill-posed problem 5.7e+20 2.4e-15 (256) 2.8e-14 (2)

Table IV: Errors of CAQR-HR on square matrices (m = 1000).
The numbers in parentheses give the panel width yielding largest
error.

B. Square Matrices

We now present numerical results for the QR factorization

of square matrices using a panel-by-panel factorization. The

matrices are generated similarly to [27], where the set

is chosen from well-known anomalous matrices. Most are

of size 1000-by-1000 (except the ARC130 and FS 541 1

matrices, which are respectively of order 130 and 541), with

various condition numbers, some of them being very ill-

conditioned (i.e. having a condition number much larger than

the inverse of machine precision). We tried several panel

sizes ranging from 2 to 256 columns and report only the

largest errors and their associated panel widths.

Results from Table IV show that TSQR-HR is numerically

stable in terms of backward errors when computing the QR

factorization of full matrices, regardless of the condition

number of the matrix, as suggested by Theorem V.3. Again,

Yamamoto’s approach displays similar results. Altogether,

these two sets of experiments demonstrate the numerical sta-

bility of the proposed approach on representative matrices.

VII. PERFORMANCE

Having established the stability of our algorithm, we now

analyze its experimental performance. We demonstrate that

for tall and skinny matrices TSQR-HR achieves better par-

allel scalability than library implementations (ScaLAPACK

and Elemental) of Householder-QR. Further, we show that

for square matrices Two-Level CAQR-HR outperforms our

implementation of CAQR, and library implementations of

2D-Householder-QR.

A. Architecture

The experimental platform is “Hopper,” which is a Cray

XE6 supercomputer, built from dual-socket 12-core “Magny-

Cours” Opteron compute nodes. We used the Cray LibSci

BLAS routines. This machine is located at the NERSC

supercomputing facility. Each node can be viewed as a four-

chip compute configuration due to NUMA domains. Each

of these four chips have six super-scalar, out-of-order cores

running at 2.1 GHz with private 64 KB L1 and 512 KB

L2 caches. Nodes are connected through Cray’s “Gemini”

network, which has a 3D torus topology. Each Gemini chip,

which is shared by two Hopper nodes, is capable of 9.8 GB/s

bandwidth.

B. Parallel Scalability

In this section, we give performance results based on

our C++/MPI/LAPACK implementations of TSQR, TSQR-

HR, Two-Level CAQR-HR, CAQR, Scatter-Apply CAQR,

and Two-Level 2D Householder, as well as two library im-

plementations of 1D Householder-QR and 2D-Householder-

QR, Elemental (version 0.80) and ScaLAPACK (native Lib-

Sci installation on Hopper, October 2013). Our implemen-

tations aim to do minimal communication and arithmetic,

and do not employ low-level tuning or overlap between

communication and computation. All the benchmarks use

one MPI process per core, despite the fact that is favorable

on Hopper to use one process per socket and six threads per

process. This decision was made because we observed that

some of the many LAPACK routines used throughout our

codes (geqrf, ormqr, tpqrt, tmpqrt, etc.) were not

threaded.

First, we study the performance of QR factorization of

tall-skinny matrices using a 1D processor grid. Figure 1

gives the strong scaling performance for a matrix of size

122,880-by-32. We also tested a range of reasonable panel

sizes that are not detailed here and observed similar per-

formance trends. We observe from Figure 1 that TSQR-HR

takes roughly twice the execution time of TSQR, which is

in line with our theoretical cost analysis. Figure 1 also gives

the time to solution of Elemental and ScaLAPACK, which

both use the Householder-QR algorithm, albeit with different

matrix blocking and collectives. We see that TSQR obtains a

performance benefit over Householder-QR due to the lower

synchronization cost and TSQR-HR preserves the scaling

behavior and remains competitive with Householder-QR.

We collected these results by taking the best observed time

over a few runs including ones where a subset of the nodes in

the scheduled partition was used. We note that ScaLAPACK

performance was highly variable and benefited significantly

from using only a fraction of the partition. For instance, on

768 nodes the best ScaLAPACK observed performance was

3.4 ms for this problem size when using half of a 1536 node

partition, but over 7 ms when using a 768 node partition.

This variability could be justified by the hypothesis that

using a subset of a partition on Hopper yields better locality

on the network, which alleviates the latency bottleneck of the

Householder-QR algorithm. This claim is supported by the

fact that the performance variability of algorithms employing

TSQR was smaller and much less benefit was yielded from

these algorithms being executed on a subset of a partition.

Second, we study the parallel scaling of QR factorization

on square matrices. In Figure 2, we compare our implemen-
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tation of CAQR with a binary tree update (no pipelining or

other optimizations), Scatter-Apply CAQR, CAQR-HR, and

Two-Level CAQR-HR, with Elemental and ScaLAPACK,

which use 2D-Householder-QR, as well as Two-Level 2D

Householder. We tuned the block sizes of all the codes

(the Two-Level CAQR-HR required tuning two block sizes),

though fewer data points were collected for larger scale runs,

due to timing and allocation constraints.

Comparing the performance of Two-Level CAQR-HR

and CAQR-HR in Figure 2, we observe that significant

benefit is obtained from aggregating the trailing matrix

update. Similarly, we note that two-level aggregation of

the 2D Householder algorithm yields a similar performance

improvement (compare ScaLAPACK with Two-Level 2D

Householder). On the other hand, the binary-tree CAQR

performance is relatively poor due to the overhead of the

implicit tree trailing update. This overhead is significantly

alleviated by the Scatter-Apply TSQR-QT algorithm for the

trailing matrix update, though the Scatter-Apply CAQR is

still slower than algorithms which perform the trailing matrix

update using the Householder form.

Overall, these results suggest that latency cost is not a

significant overhead on this platform, though as explained

in the performance analysis of the 1D algorithms, heavy

latency cost contributes to performance variability. Further,

other architectures such as cloud and grid environments

typically have higher latency payloads. We also expect

that the relative cost of messaging latency will grow in

future architectures and larger scales of parallelism as the

topological distance between computing elements grows.

Lastly, we note that for Elemental, ScaLAPACK, and all

of our QR implementations, it was often better to utilize

a rectangular processor grid with more rows than columns.

Having more processes in each column of the processor grid

accelerates the computation of each tall-skinny panel.

VIII. CONCLUSION

In this paper, we introduce a method for recovering

the Householder basis-kernel representation from any ma-

trix with orthonormal columns in a stable and efficient

manner. We argue both theoretically and empirically that

the method can be used to combine two existing ap-

proaches, Householder-QR and CAQR, to produce a more

communication-efficient and numerically stable algorithm.

Our approach provides a promising direction for het-

erogenous architectures (as suggested in [11]), where

synchronization-avoidance and high granularity computation

have even more pervasive effects on performance efficiency.

Furthermore, because our approach recovers the standard

representation of orthogonal matrices (as is used in libraries

like LAPACK), we are able to re-use the existing software

infrastructure and maintain performance portability.

Finally, we conjecture that the Householder reconstruction

technique will enable the design of a QR algorithm which

is as stable as Householder QR and reduces the bandwidth

cost asymptotically compared to parallel CAQR. We aim to

reduce the asymptotic bandwidth cost for QR as done by

Tiskin [28], except in a more practical manner, following

the communication-optimal parallel algorithm for LU [24].
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