Communication costs of sequential matrix multiplications

Suraj Kumar

Inria \& ENS Lyon
Email:suraj.kumar@inria.fr
CR12: September 2023
https://surakuma.github.io/courses/daamtc.html

Why so much stress on matrix multiplication?

- Basic in almost all computational domains
- Everyone knows about it
- Still there are many open research questions
- Easy to understand and explain ideas with this computation

BLAS: Basic Linear Algebra Subprograms

- Introduced in the 80s as a standard for LA computations
- Organized by levels:
- Level 1: vector/vector operations $(x \cdot y)$
- Level 2: vector/matrix ($A x$)
- Level 3: matrix/matrix ($A B^{T}$, blocked algorithms)
- Implementations:
- Vendors (MKL from Intel, CuBLAS from NVidia, etc.)
- Automatic Tuning: ATLAS
- GotoBLAS

Table of Contents

(1) Matrix multiplication (2) Algorithms (3) Communication bounds

Traditional matrix multiplication

- $C=A B$, where $A \in \mathbb{R}^{m \times k}, B \in \mathbb{R}^{k \times n}$, and $C \in \mathbb{R}^{m \times n}$.
- $C_{i j}=\sum_{\ell} A_{i \ell} \cdot B_{\ell j}$

For simplicity, we assume $m=k=n$.

Matrix multiplication: linear combination of columns

- A column of C is obtained by linear combination of columns of A.

Matrix multiplication: linear combination of rows

- A row of C is obtained by linear combination of rows of B.

Matrix multiplication: sum of n matrices

- Matrix multiplication can also be viewed as sum of n matrices.

Matrix multiplication: recursive calls on submatrices

- Matrix is divided into 2×2 blocks

$$
\left(\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right)=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right)
$$

$$
\begin{aligned}
& C_{11}=A_{11} B_{11}+A_{12} B_{21} \\
& C_{12}=A_{11} B_{12}+A_{12} B_{22} \\
& C_{21}=A_{21} B_{11}+A_{22} B_{21} \\
& C_{22}=A_{21} B_{12}+A_{22} B_{22}
\end{aligned}
$$

Matrix multiplication: recursive calls on submatrices

Operation count recurrence,

$$
\begin{aligned}
& T(n)=8 T\left(\frac{n}{2}\right)+\mathcal{O}\left(n^{2}\right) \\
& T(n)=1
\end{aligned}
$$

Here $\mathcal{O}\left(n^{2}\right)$ refers that $\exists c \in \mathbb{N}$ such that this term is less than or equal to $c n^{2}$ for every n.

After solving, we obtain $T(n)=\mathcal{O}\left(n^{3}\right)$.

Table of Contents

(1) Matrix multiplication

- Strassen's Matrix Multiplication
(2) Algorithms
(3) Communication bounds

Matrix multiplication: Strassen's algorithm

$$
\left(\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right)=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right)
$$

$$
\begin{array}{ll}
M_{1}=\left(A_{11}+A_{22}\right)\left(B_{11}+B_{22}\right) & \\
M_{2}=\left(A_{21}+A_{22}\right) B_{11} & C_{11}=M_{1}+M_{4}-M_{5}+M_{7} \\
M_{3}=A_{11}\left(B_{12}-B_{22}\right) & C_{12}=M_{3}+M_{5} \\
M_{4}=A_{22}\left(B_{21}-B_{11}\right) & C_{21}=M_{2}+M_{4} \\
M_{5}=\left(A_{11}+A_{12}\right) B_{22} & C_{22}=M_{1}-M_{2}+M_{3}+M_{6} \\
M_{6}=\left(A_{21}-A_{11}\right)\left(B_{11}+B_{12}\right) & \\
M_{7}=\left(A_{12}-A_{22}\right)\left(B_{21}+B_{22}\right) &
\end{array}
$$

Matrix multiplication: Strassen's algorithm

Operation count recurrence,

$$
\begin{aligned}
& T(n)=7 T\left(\frac{n}{2}\right)+\mathcal{O}\left(n^{2}\right) \\
& T(n)=1
\end{aligned}
$$

After solving, we obtain $T(n)=\mathcal{O}\left(n^{\log _{2} 7}\right)$.

$$
\log _{2} 7 \approx 2.81
$$

Open questions

- Is there a way to perform matrix multiplication in less number of operations than this algorithm?
- What is the minimum number of operations to perform matrix multiplication?

Table of Contents

(1) Matrix multiplication

(2) Algorithms

(3) Communication bounds

Analysis of traditional matrix multiplication algorithm

```
//implements C=C+AB
for i=1 to n
    for j=1 to n
    for k=1 to n
        C(i,j) = C(i,j) + A(i,k) * B(k,j);
```


Analysis of traditional matrix multiplication algorithm

```
//implements C=C+AB
for i=1 to n
    for j=1 to n
    // read row i of C into fast memory (total n^2 reads)
    for k=1 to n
        // read row i of A into fast memory (total n^3 reads)
        // read column j of B into fast memory (total n^3 reads)
        C(i,j) = C(i,j) + A(i,k) * B(k,j);
    // write row i of C back to slow memory (total n^2 writes)
```

$2 n^{3}+2 n^{2}$ reads/writes combined dominates $2 n^{3}$ computations.

Tiled matrix multiplication

- A, B, C are $n / b \times n / b$ matrices of $b \times b$ subblocks
- $3 b \times b$ blocks fit in the fast memory

Tiled matrix multiplication

```
for i=1 to n/b
    for j=1 to n/b
    // read block C(i,j) into fast memory
    // (total b^2 * n/b * n/b = n^2 reads)
    for k=1 to n/b
    // read block A(i,k) into fast memory
    // (total b^2 * n/b * n/b * n/b = n^3/b reads)
    // read block B(k,j) into fast memory
    // (total b^2 * n/b * n/b * n/b = n^3/b reads)
    //perform block matrix multiplication
    C(i,j) = C(i,j) + A(i,k) * B(k,j);
    // write block C(i,j) into fast memory
    // (total b^2 * n/b * n/b = n^2 writes)
```

$\frac{2 n^{3}}{b}+2 n^{2}$ reads/writes $\ll 2 n^{3}$ computations.

Amount of volume in matrix multiplication

- Let M be the size of the fast memory, make b as large as possible, $3 b^{2} \leq M$
- Number of reads/writes $\geq 2 \sqrt{3} n^{3} / \sqrt{M}+2 n^{2}$

Question: Is this optimal?

Assignment 1 - deadline Sept. 21

$$
\begin{aligned}
& \text { for } i=1 \text { to } m \\
& \text { for } j=1 \text { to } n \\
& \quad \text { for } k=1 \text { to } l \\
& \quad C(i, j)=C(i, j)+A(i, k) * B(k, j) \text {; }
\end{aligned}
$$

Here $A \in \mathbb{R}^{m \times \ell}, B \in \mathbb{R}^{\ell \times n}$, and $C \in \mathbb{R}^{m \times n}$. The computation is performed with infinite precision.

Questions:

(1) Prove that all the 6 permutations of the loops produce the same output.
(2) Compute the number of cache misses for each permutation of the loops. All matrices are stored in the row-major order in the slow memory. Size of each cache line is L and the cache capacity $\ll \min (m, n, \ell)$. Assume that the cache is fully associative and the least recently used (LRU) strategy is employed to evict a cache line.

Table of Contents

(1) Matrix multiplication

(2) Algorithms
(3) Communication bounds

Approach to obtain communication lower bounds

- Loomis-Whitney inequalitiy: for $d-1$ dimensional projections
- For the 2d object $G, \operatorname{Area}(G) \leq \phi_{x} \phi_{y}$
- For the 3d object H, $\operatorname{Volume}(H) \leq \sqrt{\phi_{x y} \phi_{y z} \phi_{x z}}$

- Hölder-Brascamp-Lieb (HBL) inequality - generalization for arbitrary dimensional projections
- Provide exponent for each projection

Number of iterations with a phases of R reads $(\neq M)$

Theorem

During a phase of R reads with memory M, the number of computed iterations is bounded by

$$
F_{M+R} \leq\left(\frac{1}{3}(M+R)\right)^{3 / 2}
$$

Maximize F_{M+R} constrained by:

$$
\left\{\begin{array}{l}
F_{M+R} \leq \sqrt{N_{A} N_{B} N_{C}} \\
0 \leq N_{A}, N_{B}, N_{C} \\
N_{A}+N_{B}+N_{C} \leq M+R
\end{array}\right.
$$

Using Lagrange multipliers, maximal value obtained when $N_{A}=N_{B}=N_{C}$

Selection of R

$$
\begin{aligned}
& \text { for } i=1 \text { to } m \\
& \text { for } j=1 \text { to } n \\
& \quad \text { for } k=1 \text { to } l \\
& \quad C(i, j)=C(i, j)+A(i, k) * B(k, j) ;
\end{aligned}
$$

Total number of iterations in one phase: $F_{M+R} \leq\left(\frac{1}{3}(M+R)\right)^{3 / 2}$
Total volume of reads:

$$
V_{\text {read }} \geq\left\lfloor\frac{m n \ell}{F_{M+R}}\right\rfloor \cdot R \geq\left(\frac{m n \ell}{F_{M+R}}-1\right) \cdot R
$$

Valid for all values of R, maximized when $R=2 M$:

$$
V_{\text {read }} \geq 2 m n \ell / \sqrt{M}-2 M
$$

Communication bounds

$$
V_{\text {read }} \geq 2 m n \ell / \sqrt{M}-2 M
$$

All elements of the output matrix are in the slow memory in the end. Each element of C is written at least once: $V_{\text {write }} \geq m n$

Theorem

The total volume of $I / O s$ is bounded by:

$$
V_{I / O} \geq 2 m n \ell / \sqrt{M}+m n-2 M
$$

Our tiled algorithm (explained previously)

- With square matrices, total number of reads/writes $\geq 2 \sqrt{3} n^{3} / \sqrt{M}+2 n^{2}$
- How far it is from the lower bound?

Structure of the optimal algorithm (attaining the same constant for the leading term)

Consider the following algorithm sketch:

- Partition C into blocks of size $(\sqrt{M}-1) \times(\sqrt{M}-1)$
- Partition A into block-columns of size $(\sqrt{M}-1) \times 1$
- Partition B into block-rows of size $1 \times(\sqrt{M}-1)$
- For each block C_{b} of C :
- Load the corresponding blocks of A and B on after the other
- For each pair of blocks A_{b}, B_{b}, compute $C_{b} \leftarrow C_{b}+A_{b} B_{b}$
- When all computations for C_{b} are performed, write back C_{b}

Another approach to computer communication bound

Red-Blue pebble game (Hong and Kung, 1981):

- Red pebbles: limited number S (slots in fast memory)
- Blue pebbles: unlimited number, only for slow memory

Rules:

(1) A red pebble may be placed on a vertex that has a blue pebble.
(2) A blue pebble may be placed on a vertex that has a red pebble.
(3) If all predecessors of a vertex v have a red pebble, a red pebble may be placed on v.
(9) A pebble (red or blue) may be removed at any time.
(0) No more than S red pebbles may be used at any time.
(0) A blue pebble can be placed on an input vertex at any time

Objective: put a red pebble on each target (not necessary simultaneously) using a minimum rules 1 and 2 ($1 / \mathrm{O}$ operations)

Example: FFT graph

k levels, $n=2^{k}$ vertices at each level
Minimum number S of red pebbles ?
How many $\mathrm{I} /$ Os for this minimum number S ?

