Matricized tensor times Khatri-Rao product computation

Suraj Kumar

Inria \& ENS Lyon

Email:suraj.kumar@inria.fr
CR12: October 2023
https://surakuma.github.io/courses/daamtc.html

Loomis-Whitney inequality

- Relates volume of a d-dimensional object with its all d - 1 dimensional projections
- For the 2d object $G, \operatorname{Area}(G) \leq \phi_{x} \phi_{y}$
- For the 3d object H, $\operatorname{Volume}(H) \leq \sqrt{\phi_{x y} \phi_{y z} \phi_{x z}}$

- Similarly, for a 4d object I, Volume $(I) \leq \phi_{x y z}^{\frac{1}{3}} \phi_{x y w}^{\frac{1}{3}} \phi_{x z w}^{\frac{1}{3}} \phi_{y_{z z w}^{\frac{1}{3}}}$
- How to work with arbitrary dimensional projections?

Hölder-Brascamp-Lieb (HBL) inequality

- Generalize Loomis-Whitney inequality for arbitrary dimensional projections
- Provide exponent for each projection

Lemma

Consider any positive integers ℓ and m and any m projections $\phi_{j}: \mathbb{Z}^{\ell} \rightarrow \mathbb{Z}^{\ell_{j}}$ ($\ell_{j} \leq \ell$), each of which extracts ℓ_{j} coordinates $S_{j} \subseteq[\ell]$ and forgets the $\ell-\ell_{j}$ others. Define $\mathcal{C}=\left\{s \in[0,1]^{m}: \Delta \cdot s \geq 1\right\}$, where the $\ell \times m$ matrix Δ has entries $\Delta_{i, j}=1$ if $i \in S_{j}$ and $\Delta_{i, j}=0$ otherwise. If $\left[s_{1} \cdots s_{m}\right]^{\top} \in \mathcal{C}$, then for all $F \subseteq \mathbb{Z}^{\ell}$,

$$
|F| \leq \prod_{j \in[m]}\left|\phi_{j}(F)\right|^{s_{j}} .
$$

- For tighter bound, we usually work with $\Delta \cdot \mathrm{s}=1$
- Possible that $\Delta \cdot \mathrm{s}=1$ does not have solution, then consider s such that $\Delta \cdot \mathrm{s}$ is not very far from 1
Notation: 1 represents a vector of all ones. [m] denotes $\{1,2, \cdots, m\}$ throughout the slides.

HBL inequality

Lemma

Consider any positive integers ℓ and m and any m projections $\phi_{j}: \mathbb{Z}^{\ell} \rightarrow \mathbb{Z}^{\ell_{j}}\left(\ell_{j} \leq \ell\right)$, each of which extracts ℓ_{j} coordinates $S_{j} \subseteq[\ell]$ and forgets the $\ell-\ell_{j}$ others. Define $\mathcal{C}=\left\{\mathrm{s} \in[0,1]^{m}: \Delta \cdot \mathrm{s} \geq 1\right\}$, where the $\ell \times m$ matrix Δ has entries
$\Delta_{i, j}=1$ if $i \in S_{j}$ and $\Delta_{i, j}=0$ otherwise. If $\left[s_{1} \cdots s_{m}\right]^{\top} \in \mathcal{C}$, then for all $F \subseteq \mathbb{Z}^{\ell}$,

$$
|F| \leq \prod_{j \in[m]}\left|\phi_{j}(F)\right|^{5_{j}} .
$$

Matrix multiplication ($C=A B$) example

Here $A \in \mathbb{R}^{n_{1} \times n_{2}}, B \in \mathbb{R}^{n_{2} \times n_{3}}$, and $C \in \mathbb{R}^{n_{1} \times n_{3}}$.

$$
\Delta=\begin{gathered}
\\
i \\
j \\
k
\end{gathered}\left(\begin{array}{ccc}
A & B & C \\
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

- Find $s=\left[\begin{array}{lll}s_{1} & s_{2} & s_{3}\end{array}\right]^{\top}$ such that $\Delta \cdot s=1$
- $\phi_{A}, \phi_{B}, \phi_{C}$: projections of computations on arrays A, B, C
- HBL inequality: amount of computations $\leq\left|\phi_{A}\right|^{s_{1}}\left|\phi_{B}\right|^{s_{2}}\left|\phi_{C}\right|^{s_{3}}$

HBL inequality

It can be used to obtain sequential or parallel communication lower bound.

Sequential lower bound formulation for matrix multiplication:

- Determine maximum amount of computations under segment size constraint: Maximize $\left|\phi_{A}\right|^{s_{1}}\left|\phi_{B}\right|^{s_{2}}\left|\phi_{C}\right|^{s_{3}}$ s.t. $\left|\phi_{A}\right|+\left|\phi_{B}\right|+\left|\phi_{C}\right|<=$ Constt
- Calculate total data transfers for all the segments

Parallel lower bound formulation for matrix multiplication:

- Determine the sum of array accesses to perform the required computations
- Minimize $\left|\phi_{A}\right|+\left|\phi_{B}\right|+\left|\phi_{C}\right|$ s.t. amount of computations $\leq\left|\phi_{A}\right|^{s_{1}}\left|\phi_{B}\right|^{s_{2}}\left|\phi_{C}\right|^{s_{3}}$

Optimization problems [Ballard et al., IPDPS 2017]

Lemma

Given $s_{i}>0$, the optimization problem

$$
\max _{x_{i} \geq 0} \prod_{i \in[m]} x_{i}^{s_{i}} \text { subject to } \sum_{i \in[m]} x_{i} \leq c
$$

yields the maximum value

$$
c^{\sum_{i} s_{i}} \prod_{j \in[m]}\left(\frac{s_{j}}{\sum_{i} s_{i}}\right)^{s_{j}}
$$

Lemma

Given $s_{i}>0$, the optimization problem

$$
\min _{x_{i} \geq 0} \sum_{i \in[m]} x_{i} \text { subject to } \prod_{i \in[m]} x_{i}^{s_{i}} \geq c
$$

yields the maximum value

$$
\left(\frac{c}{\prod_{i} s_{i}^{s} s_{i}}\right)^{\frac{1}{\sum_{i} s_{i}}} \sum_{j \in[m]} s_{j}
$$

Both lemmas can be proved with the Lagrange multipliers.

Table of Contents

(1) CP decomposition
(2) Matricized tensor times Khatri-Rao product (MTTKRP)

CP decomposition of $\mathcal{A} \in \mathbb{R}^{n_{1} \times n_{2} \times \cdots \times n_{d}}$

It factorizes a tensor into a sum of rank one tensors.

CP decomposition of a 3-dimensional tensor.

$$
\mathcal{A}=\sum_{\alpha=1}^{r} U_{1}(:, \alpha) \circ U_{2}(:, \alpha) \circ \cdots \circ U_{d}(:, \alpha)
$$

It can be concisely expressed as $\mathcal{A}=\llbracket U_{1}, U_{2}, \cdots, U_{d} \rrbracket$. CP decomposition for a 3-dimensional tensor in matricized form can be written as:

$$
A_{(1)}=U_{1}\left(U_{3} \odot U_{2}\right)^{T}, A_{(2)}=U_{2}\left(U_{3} \odot U_{1}\right)^{T} A_{(3)}=U_{3}\left(U_{2} \odot U_{1}\right)^{T} .
$$

It is useful to assume that $U_{1}, U_{2} \cdots U_{d}$ are normalized to length one with the weights given in a vector $\lambda \in \mathbb{R}^{r}$.

CP-ALS algorithm for a 3-dimensional tensor \mathcal{A}

Repeat until maximum iterations reached or no further improvement obtained
(1) Solve $U_{1}\left(U_{3} \odot U_{2}\right)^{T}=A_{(1)}$ for $U_{1} \Rightarrow U_{1}=A_{(1)}\left(U_{3} \odot U_{2}\right)\left(U_{3}^{T} U_{3} * U_{2}^{T} U_{2}\right)^{\dagger}$
(2) Normalize columns of U_{1}
(3) Solve $U_{2}\left(U_{3} \odot U_{1}\right)^{T}=A_{(2)}$ for $U_{2} \Rightarrow U_{2}=A_{(2)}\left(U_{3} \odot U_{1}\right)\left(U_{3}^{T} U_{3} * U_{1}^{T} U_{1}\right)^{\dagger}$
(9) Normalize columns of U_{2}
(5) Solve $U_{3}\left(U_{2} \odot U_{1}\right)^{T}=A_{(3)}$ for $U_{3} \Rightarrow U_{3}=A_{(3)}\left(U_{2} \odot U_{1}\right)\left(U_{2}^{T} U_{2} * U_{1}^{T} U_{1}\right)^{\dagger}$
(c) Normalize columns of U_{3}

Here A^{\dagger} denotes the Moore-Penrose pseudoinverse of A. We use the following identity to get expressions for U_{1}, U_{2} and U_{3} :

$$
(A \odot B)^{T}(A \odot B)=A^{T} A * B^{T} B
$$

ALS for computing a CP decomposition

Algorithm 1 CP-ALS method to compute CP decomposition
Require: input tensor $\mathcal{A} \in \mathbb{R}^{n_{1} \times \cdots \times n_{d}}$, desired rank k, initial factor matrices $U_{j} \in \mathbb{R}^{n_{j} \times k}$ for $1 \leq j \leq d$
Ensure: $\llbracket \lambda ; U_{1}, \cdots, U_{d} \rrbracket$: a rank- $k C P$ decomposition of \mathcal{A} repeat

$$
\text { for } i=1 \text { to } d \text { do }
$$

$$
V \leftarrow U_{1}^{\top} U_{1} * \cdots * U_{i-1}^{\top} U_{i-1} U_{i+1}^{\top} U_{i+1} * \cdots * U_{d}^{\top} U_{d}
$$

$$
U_{i} \leftarrow A_{(i)}\left(U_{d} \odot \cdots \odot U_{i+1} \odot U_{i-1} \odot U_{1}\right)
$$

$$
U_{i} \leftarrow U_{i} V^{\dagger}
$$

$\lambda \leftarrow$ normalize colums of U_{i}
end for
until converge or the maximum number of iterations

- The collective operation $A_{(i)}\left(U_{d} \odot \cdots \odot U_{i+1} \odot U_{i-1} \odot U_{1}\right)$ is known as Matricized tensor times Khatri-Rao product (MTTKRP) computation

Gradient based CP decomposition

$$
F=\min _{U_{1}, U_{2} U_{3}}\left\|\mathcal{A}-\llbracket U_{1}, U_{2}, U_{3} \rrbracket\right\|_{F}^{2}
$$

Gradients:

$$
\begin{gathered}
\mathcal{G}=2\left(\mathcal{A}-\llbracket U_{1}, U_{2}, U_{3} \rrbracket\right) \\
\frac{\partial F}{\partial U_{1}}=-G_{(1)}\left(U_{3} \odot U_{2}\right) \\
\frac{\partial F}{\partial U_{2}}=-G_{(2)}\left(U_{3} \odot U_{1}\right) \\
\frac{\partial F}{\partial U_{3}}=-G_{(3)}\left(U_{2} \odot U_{1}\right)
\end{gathered}
$$

Update U_{1}, U_{2} and U_{3} based on gradients until convergence or for the fixed number of iterations

Gradient based algorithm also employs MTTKRP computations.

Table of Contents

(1) CP decomposition
(2) Matricized tensor times Khatri-Rao product (MTTKRP)

MTTKRP

We want to find R-rank CP decomposition of $\mathcal{A} \in \mathbb{R}^{n_{1} \times \cdots \times n_{d}}$. The corresponding MTTKRP operation is

$$
U_{i} \leftarrow A_{(i)}\left(U_{d} \odot \cdots \odot U_{i+1} \odot U_{i-1} \odot U_{1}\right) .
$$

Two approaches to compute this operation:

- Conventional approach
- Compute Khatri-Rao products in a temporary T
- Multiply $A_{(i)}$ with the temporary $T, U_{i}=A_{(i)} T$
- Total arithmetic cost $=\mathcal{O}(N R)$
- All-at-once approach

$$
U_{i}\left(j_{i}, r\right)=\sum_{j_{1}, \cdots, j_{i}-1, j_{i+1}, \cdots j_{d}} \mathcal{A}\left(j_{1}, \cdots j_{d}\right) \prod_{k \in[d]-\{i\}} U_{k}\left(j_{k}, r\right)
$$

- Total arithmetic cost $=\mathcal{O}(d N R)$
- No intermediate is formed (may limit the partial reuse)
- Very useful to work with sparse tensor
$n_{1} n_{2} \cdots n_{d}$ is denoted by N through out the slides. We will mainly focus on all-at-once approach. This approach reduces communication

MTTKRP all-at-once pseudo code

$$
\text { For }\left\{j_{1}=1 \text { to } n_{1}\right\}
$$

$$
\text { For }\left\{j_{d}=1 \text { to } n_{d}\right\}
$$

$$
\text { For }\{r=1 \text { to } R\}
$$

$$
U_{i}\left(j_{i}, r\right)+=\mathcal{A}\left(j_{1}, \cdots j_{d}\right) \cdot \prod_{k \in[d]-\{i\}} U_{k}\left(j_{k}, r\right)
$$

Total number of loop iterations $=N R$
We assume that the innermost computation is performed atomically. This is required for the communication lower bounds.

- Sequential case : all the inputs are present in the memory when the single output value is updated
- Parallel case: all the multiplications of this computation are performed on only one processor

Table of Contents

(1) CP decomposition
(2) Matricized tensor times Khatri-Rao product (MTTKRP)

- Sequential case
- Parallel case

Δ matrix for MTTKRP

$$
\Delta=\begin{gathered}
\\
j_{1} \\
\vdots \\
j_{i} \\
\vdots \\
j_{d} \\
j_{d} \\
r
\end{gathered}\left(\begin{array}{cccccc}
1 & 1 & U_{1} & \cdots & U_{i} & \cdots \\
\vdots & & \ddots & & & \\
r & & & 1 & & \\
\vdots & & & & \ddots & \\
1 & & & & & 1 \\
& 1 & \cdots & 1 & \cdots & 1
\end{array}\right)
$$

- To obtain tight lower bound, find $s=\left[s_{1}, \cdots, s_{d}\right]^{\top}$ such that $\Delta \cdot s=1$

$$
s^{\top}=\left[1-\frac{1}{d}, \frac{1}{d}, \cdots, \frac{1}{d}\right]
$$

Analysis of a segment

We consider a segment of M loads and stores. Any algorithm in the segment can access at most $3 M$ elements.

- Output: at most M elements can be live after each segment \& $M-L$ elements written to the slow memory
- Inputs: at most M elements are available at the start of the segment \& L elements loaded to the fast memory
Let F be the subset of iteration space evaluated during the segment. $\phi_{i}(F)$ denotes the projection of F on the i-th variable.

Optimization problem:

$$
\begin{gathered}
\text { Maximize }|F| \text { subject to } \\
|F| \leq \prod_{i \in[d+1]}\left|\phi_{i}(F)\right|^{s_{i}} \\
\sum_{i \in[d+1]}\left|\phi_{i}(F)\right| \leq 3 M
\end{gathered}
$$

Communication lower bound

After solving the optimization problem, we get

$$
|F| \leq \frac{1}{d}\left(\frac{1}{2-1 / d}\right)^{2-1 / d}(1-1 / d)^{1-1 / d}(3 M)^{2-1 / d} \leq \frac{1}{d}(3 M)^{2-1 / d} .
$$

Theorem

Any sequential MTTKRP algorithm performs at least $\frac{1}{3^{2-1 / d}} \frac{d N R}{M^{1-1 / d}}-M$ loads and stores.
Proof: Data transfer lower bound $=\left\lfloor\frac{N R}{|F|}\right\rfloor M \geq\left(\frac{N R}{|F|}-1\right) M=\frac{1}{3^{2-1 / d}} \frac{d N R}{M^{1-1 / d}}-M$

Corollary

Any parallel MTTKRP algorithm performs at least $\frac{1}{3^{2-1 / d}} \frac{d N R}{P M^{1-1 / d}}-M$ sends and receives.

Proof: There must be a processor which performs at least $\frac{N R}{P}$ loop iterations, applying the previous theorem for this processor yields the mentioned bound.

Generalized size of a segment

We are interested to know how many loop iterations we can perform by accessing A elements.

Optimization problem:

$$
\begin{aligned}
& \text { Maximize }\left|F_{M+A}\right| \text { subject to } \\
& \qquad \begin{array}{l}
\left|F_{M+A}\right| \leq \prod_{i \in[d+1]}\left|\phi_{i}(F)\right|^{s_{i}} \\
\sum_{i \in[d+1]}\left|\phi_{i}(F)\right| \leq M+A
\end{array}
\end{aligned}
$$

Data transfer lower bound $=\left\lfloor\frac{N R}{\left|F_{M+A}\right|}\right\rfloor A \geq\left(\frac{N R}{\left|F_{M+A}\right|}-1\right) A$
We select A such that the bound is maximum.

Communication optimal sequential algorithm

We select a block size b such that $b^{d}+d b \leq M$.
(1) Loop over $b \times \cdots \times b$ blocks of the tensor
(2) With block in memory, loop over subcolumns of input factor matrices and update corresponding subcolumn of output matrix

Amount of data transfer is bounded by

$$
N+\left\lceil\frac{n_{1}}{b}\right\rceil \cdots\left\lceil\frac{n_{d}}{b}\right\rceil \cdot R(d+1) b
$$

With $b \approx M^{1 / d}$, data transfer cost $=$

$$
\mathcal{O}\left(N+\frac{d N R}{M^{1-1 / d}}\right)
$$

Sequential block algorithm for $d=3$:

Comparisons

	Lower Bound	All-at-once	Conventional (MM)
Flops	-	$d N R$	$2 N R$
Words	$\Omega\left(\frac{d N R}{M^{1-1 / d}}\right)$	$\mathcal{O}\left(N+\frac{d N R}{M^{1-1 / d}}\right)$	$O\left(N+\frac{N R}{M^{1 / 2}}\right)$
Temp Mem	-	-	$\frac{N R}{n_{i}}$

- All-at-once approach performs $\frac{d}{2}$ more flops than the conventional approach
- For relatively small R, N term dominates communication
- This is the typical case in practice
- For relatively large R, all-at-once approach based algorithm communicates less
- better exponent on M

Table of Contents

(1) CP decomposition
(2) Matricized tensor times Khatri-Rao product (MTTKRP)

- Sequential case
- Parallel case

Settings to compute parallel communication lower bound

- The algorithm load balances the computation - each processor performs $N R / P$ number of loop iterations
- One copy of data is in the system
- There exists a processor whose input data at the start plus output data at the end must be at most $\frac{N+\sum_{i=1}^{d} n_{i} R}{P}$ words - will analyze amount of data transfers for this processor

Communication lower bound

Let F be the subset of iteration space evaluated on a processor. $\phi_{i}(F)$ denotes the projection of F on the i-th variable. We recall that $s^{\top}=\left[1-\frac{1}{d}, \frac{1}{d}, \cdots, \frac{1}{d}\right]$. Optimization problem:

$$
\begin{aligned}
& \text { Minimize } \sum_{i \in[d+1]}\left|\phi_{i}(F)\right| \text { subject to } \\
& \frac{N R}{P} \leq \prod_{i \in[d+1]}\left|\phi_{i}(F)\right|^{s_{i}}
\end{aligned}
$$

After solving the above optimization we obtain,

$$
\sum_{i \in[d+1]}\left|\phi_{i}(F)\right|=\left(\sum_{i} s_{i}\right)\left(\frac{N R / P}{\prod_{i} s_{i}^{s_{i}}}\right)^{1 / \sum_{i} s_{i}}=(2-1 / d)\left(\frac{N R / P}{\prod_{i} s_{i}^{s_{i}}}\right)^{\frac{d}{2 d-1}} \geq 2\left(\frac{d N R}{P}\right)^{\frac{d}{2 d-1}} .
$$

Communication lower bound $=\sum_{i \in[d+1]}\left|\phi_{i}(F)\right|-$ data owned by the processor

$$
\geq 2\left(\frac{d N R}{P}\right)^{\frac{d}{2 d-1}}-\frac{N+\sum_{i=1}^{d} n_{i} R}{P}
$$

Sketch of communication optimal algorithm for $d=3$

Assume that the required rank (R) is small. We do not need to communicate tensor in this setting. Suppose we want to update U_{2}.

Each processor
(1) Starts with one subtensor and subset of rows of each input factor matrix

Sketch of communication optimal algorithm for $d=3$

Assume that the required rank (R) is small. We do not need to communicate tensor in this setting. Suppose we want to update U_{2}.

Each processor
(1) Starts with one subtensor and subset of rows of each input factor matrix
(2) All-Gathers all the rows needed from U_{1}

Sketch of communication optimal algorithm for $d=3$

Assume that the required rank (R) is small. We do not need to communicate tensor in this setting. Suppose we want to update U_{2}.

Each processor
(1) Starts with one subtensor and subset of rows of each input factor matrix
(2) All-Gathers all the rows needed from U_{1}
(3) All-Gathers all the rows needed from U_{3}

Sketch of communication optimal algorithm for $d=3$

Assume that the required rank (R) is small. We do not need to communicate tensor in this setting. Suppose we want to update U_{2}.

Each processor
(1) Starts with one subtensor and subset of rows of each input factor matrix
(2) All-Gathers all the rows needed from U_{1}
(3) All-Gathers all the rows needed from U_{3}
(4) Computes its contribution to rows of U_{2} (local MTTKRP)

Sketch of communication optimal algorithm for $d=3$

Assume that the required rank (R) is small. We do not need to communicate tensor in this setting. Suppose we want to update U_{2}.

Each processor
(1) Starts with one subtensor and subset of rows of each input factor matrix
(2) All-Gathers all the rows needed from U_{1}
(3) All-Gathers all the rows needed from U_{3}
(4) Computes its contribution to rows of U_{2} (local MTTKRP)

Sketch of communication optimal algorithm for $d=3$

Assume that the required rank (R) is small. We do not need to communicate tensor in this setting. Suppose we want to update U_{2}.

Each processor
(1) Starts with one subtensor and subset of rows of each input factor matrix
(2) All-Gathers all the rows needed from U_{1}
(3) All-Gathers all the rows needed from U_{3}
(4) Computes its contribution to rows of U_{2} (local MTTKRP)
(5) Reduce-Scatters to compute and distribute U_{2} evenly

Parallel communication optimal MTTKRP algorithm

Algorithm 2 Parallel MTTKRP algorithm

Require: input tensor $\mathcal{A} \in \mathbb{R}^{n_{1} \times \cdots \times n_{d}}$, factor matrices $U_{j} \in \mathbb{R}^{n_{j} \times R}$ for $1 \leq j \leq d$, mode j, P processors are arranged in $p_{0} \times p_{1} \times \cdots \times p_{d}$ logical processor grid
Ensure: Updated U_{j}
1: $\left(p_{0}^{\prime}, p_{1}^{\prime}, \cdots, p_{d}^{\prime}\right)$ is my processor id
2: //All-gather input tensor
3: $\mathcal{A}_{p_{1}^{\prime}, \cdots, p_{d}^{\prime}}=\operatorname{All-Gather}\left(\mathcal{A},\left(*, p_{1}^{\prime}, \cdots, p_{d}^{\prime}\right)\right)$
4: //All-gather factor matrices except U_{j}
5: for $k \in[d]-\{j\}$ do
6: $\quad\left(U_{k}\right)_{p_{0}^{\prime}, p_{k}^{\prime}}=\operatorname{All-Gather}\left(U_{k},\left(p_{0}^{\prime}, *, \cdots, *, p_{k}^{\prime}, *, \cdots, *\right)\right)$
7: end for
8: //Compute local MTTKRP
9: $T=$ Local-MTTKRP $\left(\mathcal{A}_{p_{1}^{\prime}, \cdots, p_{d}^{\prime}},\left(U_{k}\right)_{p_{0}^{\prime}, p_{k}^{\prime}}, j\right)$
10: //Reduce scatter along the processors which have same p_{0}^{\prime} and p_{j}^{\prime}
11: Reduce-Scatter $\left(\left(U_{j}\right)_{p_{0}^{\prime}, p_{j}^{\prime}}, T,\left(p_{0}^{\prime}, *, \cdots, *, p_{j}^{\prime}, *, \cdots, *\right)\right)$

Communication cost

We set $p_{0} \approx \frac{(d R)^{\frac{d}{2 d-1}}}{(N / P)^{\frac{d-1}{2 d-1}}}$ and $p_{k} \approx \frac{n_{k}}{\left(N p_{0} / P\right)^{\frac{1}{d}}}$ for $k \in[d]$.

Communication cost of the algorithm with the above processor grid is

$$
\mathcal{O}\left(\frac{d N R}{P}\right)^{\frac{d}{2 d-1}}
$$

Perspectives

- Tight communication lower bounds for MTTKRP with small P and rectangular factor matrices
- Cost analysis of several ways to perform MTTKRP
- Amount of reuse across multiple MTTKRPs
- Optimal cost of CP-ALS algorithm for an iteration (or for a set of d-iterations)

