Multiple Tensor Times Matrix computation

Suraj Kumar
Inria \& ENS Lyon
Email:suraj.kumar@inria.fr
CR12: October 2023
https://surakuma.github.io/courses/daamtc.html

Tucker decomposition of $X \in \mathbb{R}^{n_{1} \times n_{2} \times \cdots \times n_{d}}$

It represents a tensor with d matrices (usually orthonormal) and a small core tensor.

Tucker decomposition of a 3-dimensional tensor.

$$
\begin{gathered}
\boldsymbol{x}=\boldsymbol{y} \times_{1} \mathrm{~A}^{(1)} \cdots \times_{d} \mathrm{~A}^{(d)} \\
X\left(i_{1}, \cdots, i_{d}\right)=\sum_{\alpha_{1}=1}^{r_{1}} \cdots \sum_{\alpha_{d}=1}^{r_{d}} \boldsymbol{y}\left(\alpha_{1}, \cdots, \alpha_{d}\right) \mathrm{A}^{(1)}\left(i_{1}, \alpha_{1}\right) \cdots \mathrm{A}^{(d)}\left(i_{d}, \alpha_{d}\right)
\end{gathered}
$$

It can be concisely expressed as $\boldsymbol{X}=\llbracket \boldsymbol{y} ; \mathrm{A}^{(1)}, \cdots, \mathrm{A}^{(d)} \rrbracket$. Here r_{j} for $1 \leq j \leq d$ denote a set of ranks. Matrices $A^{(j)} \in \mathbb{R}^{n_{j} \times r_{j}}$ for $1 \leq j \leq d$ are usually orthonormal and known as factor matrices. The tensor $\boldsymbol{y} \in \mathbb{R}^{r_{1} \times r_{2} \times \cdots \times r_{d}}$ is called the core tensor.

High Order SVD (HOSVD) for computing a Tucker decomposition

Algorithm 1 HOSVD method to compute a Tucker decomposition

Require: input tensor $\mathcal{X} \in \mathbb{R}^{n_{1} \times \cdots \times n_{d}}$, desired rank $\left(r_{1}, \cdots, r_{d}\right)$
Ensure: $\boldsymbol{X}=\boldsymbol{y} \times{ }_{1} \mathrm{~A}^{(1)} \times_{2} \mathrm{~A}^{(2)} \cdots{ }^{2}{ }_{d} \mathrm{~A}^{(d)}$
1: for $k=1$ to d do
2: $\quad A^{(k)} \leftarrow r_{k}$ leading left singular vectors of $X_{(k)}$
3: end for
4: $\boldsymbol{y}=\boldsymbol{X} \times{ }_{1} \mathrm{~A}^{(1)^{\top}} \times{ }_{2} \mathrm{~A}^{(2)^{\top}} \cdots \times{ }_{d} \mathrm{~A}^{(d)^{\top}}$

- When $r_{i}<\operatorname{rank}\left(X_{(i)}\right)$ for one or more i, the decomposition is called the truncated-HOSVD (T-HOSVD)
- The collective operation $X \times{ }_{1} A^{(1)}{ }^{\top} \times_{2} A^{(2)^{\top}} \cdots \times_{d} A^{(d)}{ }^{\top}$ is known as Multiple Tensor-Times-Matrix (Multi-TTM) computation

Sequentially T-HOSVD (ST-HOSVD) for Tucker decomposition

- This method is more work efficient than T-HOSVD
- In each step, it reduces the size of one dimension of the tensor

Algorithm 2 ST-HOSVD method to compute a Tucker decomposition
Require: input tensor $\mathcal{X} \in \mathbb{R}^{n_{1} \times \cdots \times n_{d}}$, desired rank (r_{1}, \cdots, r_{d})
Ensure: $\llbracket \boldsymbol{y} ; \mathrm{A}^{(1)}, \cdots, \mathrm{A}^{(d)} \rrbracket:$ a $\left(r_{1}, \cdots, r_{d}\right)$-rank Tucker decomposition of \mathcal{X}
1: $\mathcal{W} \leftarrow \mathcal{X}$
2: for $k=1$ to d do
3: $\quad \mathrm{A}^{(k)} \leftarrow r_{k}$ leading singular vectors of $W_{(k)}$
4: $\quad \mathcal{W} \leftarrow \mathcal{W} \times{ }_{k} A^{(k)^{\top}}$
5: end for
6: $\boldsymbol{y}=\mathcal{W}$

We can note that ST-HOSVD also performs Multi-TTM computation by doing a sequence of TTM operations, i.e, $\boldsymbol{y}=\left(\left(\mathcal{X} \times{ }_{1} A^{(1)^{\top}}\right) \times{ }_{2} A^{(2)^{\top}}\right) \cdots \times{ }_{d} A^{(d)^{\top}}$.

Bottlenecks for algorithms to compute Tucker decompositions

- Multi-TTM becomes the overwhelming bottleneck computation when
- Matrix SVD costs are reduced using randomization via sketching or
- U_{k} are computed with eigen value decompositions of $B_{(k)} B_{(k)}^{T}$

Multi-TTM computation

Let $\boldsymbol{y} \in \mathbb{R}^{r_{1} \times \cdots \times r_{d}}$ be the output tensor, $\boldsymbol{X} \in \mathbb{R}^{n_{1} \times \cdots \times n_{d}}$ be the input tensor, and $\mathrm{A}^{(k)} \in \mathbb{R}^{n_{k} \times r_{k}}$ be the matrix of the k th mode. Then the Multi-TTM computation can be represented as

$$
\begin{aligned}
& \boldsymbol{y}=\boldsymbol{x} \times_{1} \mathrm{~A}^{(1)^{\top}} \cdots \times_{d} \mathrm{~A}^{(d)^{\top}} \\
& \text { or } \boldsymbol{x}=\boldsymbol{y} \times_{1} \mathrm{~A}^{(1)} \cdots \times_{d} \mathrm{~A}^{(d)} .
\end{aligned}
$$

We will focus only on the first representation in this course. Our results and analysis extend straightforwardly to the latter case.
Two approaches to perform this computation:

- TTM-in-sequence approach - performed by a sequence of TTM operations

$$
\boldsymbol{y}=\left(\left(\boldsymbol{X} \times{ }_{1} \mathrm{~A}^{(1)^{\top}}\right) \times_{2} \mathrm{~A}^{(2)^{\top}}\right) \cdots \times_{d} \mathrm{~A}^{(d)^{\top}}
$$

- All-at-once approach

$$
\boldsymbol{y}\left(r_{1}^{\prime}, \ldots, r_{d}^{\prime}\right)=\sum_{\left\{n_{k}^{\prime} \in\left[n_{k}\right]\right\}_{k \in[d]}} \boldsymbol{X}\left(n_{1}^{\prime}, \ldots, n_{d}^{\prime}\right) \prod_{j \in[d]} \mathrm{A}^{(j)}\left(n_{j}^{\prime}, r_{j}^{\prime}\right)
$$

[d] denotes $\{1,2, \cdots, d\}$. We represent $n_{1} n_{2} \cdots n_{d}$ and $r_{1} r_{2} \cdots r_{d}$ by n and r, respectively. We mainly focus on all-at-once approach,

All-at-once Multi-TTM pseudo code

for $n_{1}^{\prime}=1: n_{1}, \ldots$, for $n_{d}^{\prime}=1: n_{d}$, for $r_{1}^{\prime}=1: r_{1}, \ldots$, for $r_{d}^{\prime}=1: r_{d}$,

$$
\boldsymbol{y}\left(r_{1}^{\prime}, \ldots, r_{d}^{\prime}\right)+=\boldsymbol{X}\left(n_{1}^{\prime}, \ldots, n_{d}^{\prime}\right) \cdot \mathrm{A}^{(1)}\left(n_{1}^{\prime}, r_{1}^{\prime}\right) \cdots \cdots \mathrm{A}^{(N)}\left(n_{d}^{\prime}, r_{d}^{\prime}\right)
$$

\triangle matrix for Multi-TTM

Final assignment - deadline Oct 26

Question: Let $\boldsymbol{y} \in \mathbb{R}^{r \times r \times r}, \mathcal{X} \in \mathbb{R}^{n \times n \times n}$ and $A \in \mathbb{R}^{n \times r}$. What are the different approaches to perform the following Multi-TTM computation?

$$
\boldsymbol{y}=\boldsymbol{X} \times_{1} A^{\top} \times_{2} A^{\top} \times_{3} A^{\top}
$$

Compute the exact number of arithmetic operations for each approach.

Table of Contents

(1) Parallel Multi-TTM computation

Settings to compute parallel communication lower bound

- Without loss of generality, we assume that $n_{1} r_{1} \leq n_{2} r_{2} \leq \cdots \leq n_{d} r_{d}$
- The input tensor is larger than the output tensor, i.e., $n \geq r$
- The algorithm load balances the computation - each processor performs $1 / P$ th number of loop iterations
- One copy of data is in the system
- There exists a processor whose input data at the start plus output data at the end must be at most $\frac{n+r+\sum_{i=1}^{d} n_{i} r_{i}}{P}$ words - will analyze amount of data transfers for this processor
- Assume that the innermost computation is atomic - all the multiplications are performed on only one processor

Table of Contents

(1) Parallel Multi-TTM computation

- 3-dimensional Multi-TTM
- d-dimensional Multi-TTM

Optimization problems (Ballard et. al., 2023)

Lemma

Consider the following optimization problem:

$$
\begin{aligned}
& \min _{x, y, z} x+y+z \text { such that } \\
& \frac{n r}{P} \leq x y z, \quad 0 \leq x \leq n_{1} r_{1}, \quad 0 \leq y \leq n_{2} r_{2}, \quad 0 \leq z \leq n_{3} r_{3}
\end{aligned}
$$

where $n_{1} r_{1} \leq n_{2} r_{2} \leq n_{3} r_{3}$, and $n_{1}, n_{2}, n_{3}, r_{1}, r_{2}, r_{3}, P \geq 1$. The optimal solution $\left(x^{*}, y^{*}, z^{*}\right)$ depends on the relative values of the constraints, yielding three cases:
(1) if $P<\frac{n_{3} r_{3}}{n_{2} r_{2}}$, then $x^{*}=n_{1} r_{1}, y^{*}=n_{2} r_{2}, z^{*}=\frac{n_{3} r_{3}}{P}$;
(2) if $\frac{n_{3} r_{3}}{n_{2} r_{2}} \leq P<\frac{n_{2} n_{3} r_{2} r_{3}}{n_{1}^{2} r_{1}^{2}}$, then $x^{*}=n_{1} r_{1}, y^{*}=z^{*}=\left(\frac{n_{2} n_{3} r_{2} r_{3}}{P}\right)^{\frac{1}{2}}$;
(3) if $\frac{n_{2} n_{3} r_{2} r_{3}}{n_{1}^{2} r_{1}^{2}} \leq P$, then $x^{*}=y^{*}=z^{*}=\left(\frac{n r}{P}\right)^{\frac{1}{3}}$;
which can be visualized as follows.

Optimization problems (Ballard et. al., 2023)

Lemma

Consider the following optimization problem:

$$
\begin{gathered}
\min _{u, v} u+v \text { such that } \\
\frac{n r}{P} \leq u v, \quad 0 \leq u \leq r, \quad 0 \leq v \leq n
\end{gathered}
$$

where $n \geq r$, and $n, r, P \geq 1$. The optimal solution $\left(u^{*}, v^{*}\right)$ depends on the relative values of the constraints, yielding two cases:
(1) if $P<\frac{n}{r}$, then $u^{*}=r, v^{*}=\frac{n}{P}$;
(2) if $\frac{n}{r} \leq P$, then $u^{*}=v^{*}=\left(\frac{n r}{P}\right)^{\frac{1}{2}}$;
which can be visualized as follows.

Both lemma can be proved using the KKT conditions.

Communication lower bound

Theorem

Any computationally load balanced atomic Multi-TTM algorithm that starts and ends with one copy of the data distributed across processors involving 3-dimensional tensors with dimensions n_{1}, n_{2}, n_{3} and r_{1}, r_{2}, r_{3} performs at least $A+B-\left(\frac{n}{P}+\frac{r}{P}+\sum_{j=1}^{3} \frac{n_{j} r_{j}}{P}\right)$ sends or receives where

$$
\begin{aligned}
& A= \begin{cases}n_{1} r_{1}+n_{2} r_{2}+\frac{n_{3} r_{3}}{P} & \text { if } P<\frac{n_{3} r_{3}}{n_{2} r_{2}} \\
n_{1} r_{1}+2\left(\frac{n_{2} n_{3} r_{2} r_{3}}{P}\right)^{\frac{1}{2}} & \text { if } \frac{n_{3} r_{3}}{n_{2} r_{2}} \leq P<\frac{n_{2} n_{3} r_{3} r_{3}}{n_{1}^{2} r_{1}^{2}} \\
3\left(\frac{n r}{P}\right)^{\frac{1}{3}} & \text { if } \frac{n_{2} n_{3} r_{2}}{n_{1}^{2} r_{1}^{2}} \leq P\end{cases} \\
& B= \begin{cases}r+\frac{n}{P} & \text { if } P<\frac{n}{r} \\
2\left(\frac{n r}{P}\right)^{\frac{1}{2}} & \text { if } \frac{n}{r} \leq P .\end{cases}
\end{aligned}
$$

Communication lower bound proof

Let F be the set of loop indices performed by a processor and $|F|=n r / P$. Define $\phi_{x}(F), \phi_{y}(F)$ and $\phi_{j}(F)$ to be the projections of F onto the indices of the arrays $\boldsymbol{X}, \boldsymbol{y}$, and $\mathrm{A}^{(j)}$ for $1 \leq j \leq 3$. Δ matrix can be represented as,

$$
\Delta=\left(\begin{array}{lll}
l_{3 \times 3} & 1_{3} & 0_{3} \\
l_{3 \times 3} & 0_{3} & 1_{3}
\end{array}\right) .
$$

Let $\mathcal{C}=\left\{s \in[0,1]^{5}: \Delta \cdot s \geq 1\right\}$. Here Δ is not full rank, we consider all vectors $v=\left[\begin{array}{lll}a & \text { a a } 1-a 1-a\end{array}\right]^{\top} \in \mathcal{C}$ where $0 \leq a \leq 1$ such that $\Delta \cdot v=1$. From HBL inequality, we obtain

$$
\frac{n r}{P} \leq\left(\prod_{j \in[3]}\left|\phi_{j}(F)\right|\right)^{a}\left(\left|\phi_{x}(F) \| \phi_{y}(F)\right|\right)^{1-a}
$$

This is equivalent to $\frac{n r}{P} \leq \prod_{j \in[3]}\left|\phi_{j}(F)\right|$ and $\frac{n r}{P} \leq\left|\phi_{x}(F)\right|\left|\phi_{y}(F)\right|$. We also have $\left|\phi_{x}(F)\right| \leq n,\left|\phi_{y}(F)\right| \leq r$, and $\left|\phi_{j}(F)\right| \leq n_{j} r_{j}$ for $1 \leq j \leq 3$. We want to minimize $|\phi x(F)|+\left|\phi_{y}(F)\right|+\sum_{j \in[3]}\left|\phi_{j}(F)\right|$. Employing the previous two lemmas and subtracting the owned data of the processor yields the mentioned bound.

Multi-TTM with cubical tensors

Corollary

Any computationally load balanced atomic Multi-TTM algorithm that starts and ends with one copy of the data distributed across processors involving 3-dimensional cubical tensors with dimensions $n^{\frac{1}{3}} \times n^{\frac{1}{3}} \times n^{\frac{1}{3}}$ and $r^{\frac{1}{3}} \times r^{\frac{1}{3}} \times r^{\frac{1}{3}}$ (with $n \geq r$) performs at least

$$
3\left(\frac{n r}{P}\right)^{\frac{1}{3}}+r-\frac{3(n r)^{\frac{1}{3}}+r}{P}
$$

sends or receives when $P<\frac{n}{r}$ and at least

$$
3\left(\frac{n r}{P}\right)^{\frac{1}{3}}+2\left(\frac{n r}{P}\right)^{\frac{1}{2}}-\frac{n+3(n r)^{\frac{1}{3}}+r}{P}
$$

sends or receives when $P \geq \frac{n}{r}$.

We will manily focus on $P<\frac{n}{r}$ case throughout the slides.

Data distribution model

P processors are organized in a 6-dimensional $p_{1} \times p_{2} \times p_{3} \times q_{1} \times q_{2} \times q_{3}$ logical processor grid.

Subtensor \boldsymbol{X}_{231} is distributed evenly among processors ($2,3,1, *, *, *$). Similarly, submatrix $\mathrm{A}_{31}^{(2)}$ is distributed evenly among processors $(*, 3, *, *, 1, *)$.

Parallel Multi-TTM algorithm

Algorithm 3 Parallel Atomic 3-dimensional Multi-TTM

Require: $X, \mathrm{~A}^{(1)}, \mathrm{A}^{(2)}, \mathrm{A}^{(3)}, p_{1} \times p_{2} \times p_{3} \times q_{1} \times q_{2} \times q_{3}$ logical processor grid Ensure: \boldsymbol{y} such that $\boldsymbol{y}=\boldsymbol{X} \times{ }_{1} A^{(1)^{\top}} \times{ }_{2} A^{(2)^{\top}} \times{ }_{3} A^{(3)^{\top}}$
1: $\left(p_{1}^{\prime}, p_{2}^{\prime}, p_{3}^{\prime}, q_{1}^{\prime}, q_{2}^{\prime}, q_{3}^{\prime}\right)$ is my processor id
2: //All-gather input tensor \mathcal{X}
3: $X_{p_{1}^{\prime} p_{2}^{\prime} p_{3}^{\prime}}=$ All-Gather $\left(X,\left(p_{1}^{\prime}, p_{2}^{\prime}, p_{3}^{\prime}, *, *, *\right)\right)$
4: //All-gather input matrices
5: $\mathrm{A}_{p_{1}^{\prime} q_{1}^{\prime}}^{(1)}=\operatorname{All}-\operatorname{Gather}\left(\mathrm{A}^{(1)},\left(p_{1}^{\prime}, *, *, q_{1}^{\prime}, *, *\right)\right)$
6: $\mathrm{A}_{p_{2}^{\prime} q_{2}^{\prime}}^{(2)}=$ All-Gather $\left(\mathrm{A}^{(2)},\left(*, p_{2}^{\prime}, *, *, q_{2}^{\prime}, *\right)\right)$
7: $\mathrm{A}_{p_{3}^{\prime} q_{3}^{\prime}}^{(3)}=\operatorname{All}-\operatorname{Gather}\left(\mathrm{A}^{(3)},\left(*, *, p_{3}^{\prime}, *, *, q_{3}^{\prime}\right)\right)$
8: //Local computations in a temporary tensor \mathfrak{T}
9: $\mathcal{T}=$ Local-Multi-TTM $\left(\boldsymbol{X}_{p_{1}^{\prime} p_{2}^{\prime} p_{3}^{\prime}}, \mathrm{A}_{p_{1}^{\prime} q_{1}^{\prime}}^{(1)}, \mathrm{A}_{p_{2}^{\prime} q_{2}^{\prime},}^{(2)} \mathrm{A}_{p_{3}^{\prime} q_{3}^{\prime}}^{(3)}\right)$
10: //Reduce-scatter the output tensor in $\boldsymbol{y}_{q_{1}^{\prime} q_{2}^{\prime} q_{3}^{\prime}}$
11: Reduce-Scatter $\left(\boldsymbol{y}_{q_{1}^{\prime} q_{2}^{\prime} q_{3}^{\prime}}, \mathfrak{T},\left(*, *, *, q_{1}^{\prime}, q_{2}^{\prime}, q_{3}^{\prime}\right)\right)$

Steps of the algorithm

(a) Perform All-Gather on processors $(2,1,1, *, *, *)$ to obtain x_{211}.

(b) Perform All-Gather on processors $(2, *, *, 1, *, *)$ to obtain $\mathrm{A}_{21}^{(1)}$.

(c) Perform All-Gather
on processors on processors
$(*, 1, *, *, 3, *)$ to obtain $\mathrm{A}_{13}^{(2)}$.

(d) Perform

All-Gather
on processors $(*, *, 1, *, *, 1)$ to obtain $\mathrm{A}_{11}^{(3)}$.

(e) Perform local
Multi-TTM to compute partial y_{131}.

(f) Perform Reduce-Scatter on processors ($*, *, *, 1,3,1$) to compute/distribute y_{131}.

Steps of the algorithm for processor $(2,1,1,1,3,1)$, where $p_{1}=p_{2}=p_{3}=q_{1}=$ $q_{2}=q_{3}=3$. Highlighted areas correspond to the data blocks on which the processor is operating. The dark red highlighting represents the input/output data initially/finally owned by the processor, and the light red highlighting corresponds to received/sent data from/to other processors in All-Gather/Reduce-Scatter collectives to compute \boldsymbol{y}_{131}.

Cost analysis

The bandwidth cost of the algorithm is

$$
\frac{n}{p}+\frac{n_{1} r_{1}}{p_{1} q_{1}}+\frac{n_{2} r_{2}}{p_{2} q_{2}}+\frac{n_{3} r_{3}}{p_{3} q_{3}}+\frac{r}{q}-\left(\frac{n+n_{1} r_{1}+n_{2} r_{2}+n_{3} r_{3}+r}{P}\right) .
$$

Here $p=p_{1} p_{2} p_{3}$ and $q=q_{1} q_{2} q_{3}$. The algorithm is communication optimal when we select p_{i} and q_{i} based on lower bounds.

Arithmetic operations

The dimensions of $\mathcal{X}_{p_{1}^{\prime} p_{2}^{\prime} p_{3}^{\prime}}$ and \mathcal{T} are $\frac{n_{1}}{p_{1}} \times \frac{n_{2}}{p_{2}} \times \frac{r_{3}}{p_{3}}$ and $\frac{r_{1}}{q_{1}} \times \frac{r_{2}}{q_{2}} \times \frac{r_{3}}{q_{3}}$, respectively. The dimension of $\mathrm{A}_{p_{k}^{\prime} q_{k}^{\prime}}^{(k)}$ is $\frac{n_{i}}{p_{i}} \times \frac{r_{i}}{q_{i}}$ for $i=1,2,3$.

- Local Multi-TTM can be performed as a sequence of TTM operations
- Assuming TTM operations are performed in their order, first with $A^{(1)}$, then with $A^{(2)}$, and in the end with $A^{(3)}$,

$$
\text { Total arithmetic operations }=2\left(\frac{n_{1} n_{2} n_{3} r_{1}}{p_{1} p_{2} p_{3} q_{1}}+\frac{n_{2} n_{3} r_{1} r_{2}}{p_{2} p_{3} q_{1} q_{2}}+\frac{n_{3} r_{1} r_{2} r_{3}}{p_{3} q_{1} q_{2} q_{3}}\right) .
$$

Multi-TTM cost in TuckerMPI library

- State-of-the-art library for parallel Tucker decomposition
- Implements ST-HOSVD algorithm - employs TTM-in-sequence approach to perform Multi-TTM
- Assume TTMs are performed in increasing mode order

It uses a $\tilde{p_{1}} \times \tilde{p_{2}} \times \tilde{p_{3}}$ logical processor grid. The bandwidth cost is

$$
\begin{aligned}
\frac{r_{1} n_{2} n_{3}}{\tilde{p_{2}} \tilde{p_{3}}}+\frac{n_{1} r_{1}}{\tilde{p_{1}}} & +\frac{r_{1} r_{2} n_{3}}{\tilde{p_{1}} \tilde{p_{3}}}+\frac{n_{2} r_{2}}{\tilde{p_{2}}}+\frac{r_{1} r_{2} r_{3}}{\tilde{p_{1}} \tilde{p_{2}}}+\frac{n_{3} r_{3}}{\tilde{p_{3}}} \\
& -\frac{r_{1} n_{2} n_{3}+r_{1} r_{2} n_{3}+r_{1} r_{2} r_{3}+n_{1} r_{1}+n_{2} r_{2}+n_{3} r_{3}}{P}
\end{aligned}
$$

The parallel computational cost is

$$
2\left(\frac{r_{1} n_{1} n_{2} n_{3}+r_{1} r_{2} n_{2} n_{3}+r_{1} r_{2} r_{3} n_{3}}{P}\right)
$$

Comparison of All-at-once and TTM-in-sequence

Communication cost comparison of all-at-once approach (the presented algorithm) and TTM-in-sequence approach (of TuckerMPI). Comp-Overhead shows the percentage of computational overhead of the all-at-once approach with respect to the TTM-in-sequence approach. Cost of an approach represents the minimum cost among all possible processor configurations.

Comparison of All-at-once and TTM-in-sequence

All-at-Once $\longrightarrow \quad$ TTM-in-Sequence $-* \quad$ Comp-Overhead $-\cdots * \cdot \cdot$

(a) $n_{i}=2^{8}, r_{i}=2^{3}$.

(b) $n_{i}=2^{11}, r_{i}=2^{5}$.

(c) $n_{i}=2^{15}, r_{i}=2^{6}$.

- Not any clear winner for all settings
- All-at-once approach performs significantly less communication for small P
- Computational overhead of all-at-once approach is negligible for small P
- TTM-in-sequence approach is better for large P

Table of Contents

(1) Parallel Multi-TTM computation

- 3-dimensional Multi-TTM
- d-dimensional Multi-TTM

Communication lower bound

Theorem

Any computationally load balanced atomic Multi-TTM algorithm that starts and ends with one copy of the data distributed across processors and involves d-dimensional tensors with dimensions $n_{1}, n_{2}, \ldots, n_{d}$ and $r_{1}, r_{2}, \ldots, r_{d}$ performs at least $A+B-\left(\frac{n}{P}+\frac{r}{P}+\sum_{j=1}^{d} \frac{n_{j} r_{j}}{P}\right)$ sends or receives where

$$
\begin{aligned}
& \left\{\begin{array}{l}
\sum_{j=1}^{d-1} n_{j} r_{j}+\frac{N_{1} R_{1}}{P} \quad \text { if } P<\frac{N_{1} R_{1}}{n_{d-1} r_{d-1}},
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& d\left(\frac{N_{d} R_{d}}{P}\right)^{\frac{1}{d}} \quad \text { if } \frac{N_{d-1} R_{d-1}}{\left(n_{1} r_{1}\right)^{d-1}} \leq P \text {. } \\
& B= \begin{cases}r+\frac{n}{P} & \text { if } P<\frac{n}{r}, \\
2\left(\frac{n r}{P}\right)^{\frac{1}{2}} & \text { if } \frac{n}{r} \leq P .\end{cases}
\end{aligned}
$$

Parallel Multi-TTM algorithm

Algorithm 4 Parallel Atomic d-dimensional Multi-TTM

Require: $\mathfrak{X}, \mathrm{A}^{(1)}, \cdots, \mathrm{A}^{(d)}, p_{1} \times \cdots \times p_{d} \times q_{1} \times \cdots \times q_{d}$ logical processor grid Ensure: \boldsymbol{y} such that $\boldsymbol{y}=\boldsymbol{X} \times{ }_{1} \mathrm{~A}^{(1)^{\top}} \cdots \times{ }_{d} \mathrm{~A}^{(d)}{ }^{\top}$
1: $\left(p_{1}^{\prime}, \cdots, p_{d}^{\prime}, q_{1}^{\prime}, \cdots, q_{d}^{\prime}\right)$ is my processor id
2: //All-gather input tensor \mathcal{X}
3: $\boldsymbol{X}_{p_{1}^{\prime} \ldots p_{d}^{\prime}}=$ All-Gather $\left(\mathcal{X},\left(p_{1}^{\prime}, \cdots, p_{d}^{\prime}, *, \cdots, *\right)\right)$
4: //All-gather all input matrices
5: for $i=1, \cdots, d$ do
6: $\quad \mathrm{A}_{p_{i}^{\prime} q_{i}^{\prime}}^{(i)}=\operatorname{All-Gather}\left(\mathrm{A}^{(i)},\left(*, \cdots, *, p_{i}^{\prime}, * \cdots, *, q_{i}^{\prime}, *\right)\right)$
7: end for
8: //Perform local computations in a temporary tensor \mathfrak{T}
9: $\mathcal{T}=$ Local-Multi-TTM $\left(X_{p_{1}^{\prime} \ldots p_{d}^{\prime}}, A_{p_{1}^{\prime} q_{1}^{\prime}}^{(1)} \cdots, \mathrm{A}_{p_{p^{\prime}}^{\prime} d_{d}^{\prime}}^{(d)}\right)$
10: //Reduce-scatter the output tensor in $\boldsymbol{y}_{q_{1}^{\prime} \cdots q_{d}^{\prime}}$
11: Reduce-Scatter $\left(\boldsymbol{y}_{q_{1}^{\prime} \cdots q_{d}^{\prime}}, \mathcal{T},\left(*, \cdots, *, q_{1}^{\prime}, \cdots, q_{d}^{\prime}\right)\right)$

The algorithm is communication optimal when p_{i} and q_{i} are selected based on the lower bound.

Perspectives

- Cost analysis of several ways to perform Multi-TTM
- Unifying all-at-once and sequence approaches
- Study of communication-computation trade-off
- Optimal costs for algorithms to compute Tucker decompositions
- Design and implementation of parallel optimal algorithms

