Matrix factorization

Suraj Kumar

Inria \& ENS Lyon

Email:suraj.kumar@inria.fr
CR12: September 2023
https://surakuma.github.io/courses/daamtc.html

Matrix factorizations

- Useful to solve systems of linear equations $A x=b$
- Popular factorizations
- LU factorization
- QR factorization
- Singular value decomposition

Important definitions

Vector norm for $x \in \mathbb{R}^{n}$

The Euclidean norm of x is represented as $\|x\|$ or $\|x\|_{2}$ and defined as $\|x\|=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}$

Matrix norm for $A \in \mathbb{R}^{n \times n}$

Frobenius norm, $\|A\|_{F}=\sqrt{\sum_{j=1}^{n} \sum_{i=1}^{n} A_{i j}{ }^{2}}=\sqrt{\operatorname{trace}\left(A A^{T}\right)}$
Spectral norm, $\|A\|_{2}=$ largest singular value of A

Orthogonal matrix

An orthogonal matrix Q satisfies $Q^{T} Q=Q Q^{T}=I$ (the identity matrix)

- Q's rows are orthogonal to each other and have unit norm
- Q's columns are orthogonal to each other and have unit norm

Table of Contents

(1) Singular value decomposition (2) LU factorization (3) QR factorization

Singular Value Decomposition (SVD)

- It decomposes a matrix $A \in \mathbb{R}^{m \times n}$ to the form $U \Sigma V^{T}$
- U is an $m \times m$ orthogonal matrix
- V is an $n \times n$ orthogonal matrix
- Σ is an $m \times n$ rectangular diagonal matrix
- The diagonal entries $\sigma_{i}=\Sigma_{i i}$ of Σ are called singular values
- $\sigma_{i} \geq 0$ and $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{\min (m, n)}$
- Columns of U and V are known as left and right singular vectors respectively
- If u_{i}, v_{i} are the ith vector of U and V, then $A=\sum_{i=1}^{\min (m, n)} \sigma_{i} u_{i} v_{i}^{\top}$
- The largest r such that $\sigma_{r} \neq 0$ is called the rank of the matrix

SVD and rank of a matrix

- SVD represents a matrix as the sum of r rank one matrices

$+\cdots+$
- $\|A\|_{F}^{2}=\sum_{i=1}^{\min (m, n)} \sigma_{i}^{2}=\sum_{i=1}^{r} \sigma_{i}^{2}$
- If $r^{\prime} \leq r$ and $\tilde{A}=\sum_{i=1}^{r^{\prime}} \sigma_{i} u_{i} v_{i}^{T}$, then

$$
\|A-\tilde{A}\|_{F}^{2}=\sum_{i=r^{\prime}+1}^{\min (m, n)} \sigma_{i}^{2}=\sum_{i=r^{\prime}+1}^{r} \sigma_{i}^{2}
$$

- Useful for compression, dimension reduction and low-rank approximation
- Expensive to compute and hard to parallelize

Table of Contents

(1) Singular value decomposition

(2) LU factorization
(3) QR factorization

Algebra of LU factorization with an example

Given the matrix $A=\left(\begin{array}{ccc}2 & 6 & 5 \\ 4 & 15 & 11 \\ 6 & 30 & 23\end{array}\right)$

- Let $L_{1}=\left(\begin{array}{ccc}1 & 0 & 0 \\ -2 & 1 & 0 \\ -3 & 0 & 1\end{array}\right), L_{1} A=\left(\begin{array}{ccc}2 & 6 & 5 \\ 0 & 3 & 1 \\ 0 & 12 & 8\end{array}\right)$
- Let $L_{2}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -4 & 1\end{array}\right), L_{2} L_{1} A=\left(\begin{array}{lll}2 & 6 & 5 \\ 0 & 3 & 1 \\ 0 & 0 & 4\end{array}\right)$
- Let $U=\left(\begin{array}{lll}2 & 6 & 5 \\ 0 & 3 & 1 \\ 0 & 0 & 4\end{array}\right), L_{2} L_{1} A=U$

Algebra of LU factorization

$$
L_{2} L_{1} A=U \Longrightarrow A=\left(L_{2} L_{1}\right)^{-1} U=L_{1}^{-1} L_{2}^{-1} U
$$

$$
L_{1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
-3 & 0 & 1
\end{array}\right), L_{1}^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 0 & 1
\end{array}\right), L_{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -4 & 1
\end{array}\right), L_{2}^{-1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 4 & 1
\end{array}\right)
$$

$$
L_{1}^{-1} L_{2}^{-1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 4 & 1
\end{array}\right)
$$

$A=\left(\begin{array}{ccc}2 & 6 & 5 \\ 4 & 15 & 11 \\ 6 & 30 & 23\end{array}\right)=\left(\begin{array}{lll}1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 4 & 1\end{array}\right)\left(\begin{array}{lll}2 & 6 & 5 \\ 0 & 3 & 1 \\ 0 & 0 & 4\end{array}\right)=L U$, where $L=L_{1}^{-1} L_{2}^{-1}$

The need of pivoting (or row exchanges): $P A=L U$

- To avoid division by 0 or small diagonal elements (for stability)
- $A=\left(\begin{array}{lll}0 & 2 & 4 \\ 3 & 1 & 2 \\ 6 & 8 & 7\end{array}\right)$ has an LU factorization if we permute the rows of the matrix A

$$
\begin{gathered}
P A=\left(\begin{array}{lll}
3 & 1 & 2 \\
0 & 2 & 4 \\
6 & 8 & 7
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 3 & 1
\end{array}\right)\left(\begin{array}{ccc}
3 & 1 & 2 \\
0 & 2 & 4 \\
0 & 0 & -9
\end{array}\right) \\
\text { Here } P=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

Communication lower bounds

- Matrix multiplication lower bounds apply to LU factorization using reduction [Ballard et. al., 09]

$$
\left(\begin{array}{ccc}
1 & & -B \\
A & 1 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & & \\
A & 1 & \\
& & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & & -B \\
& 1 & A B \\
& & 1
\end{array}\right)
$$

Lower bounds

- Sequential lower bound on bandwidth $=\Omega\left(\frac{n^{3}}{\sqrt{M}}\right)$
- Memory-dependent parallel lower bound on bandwidth $=\Omega\left(\frac{n^{3}}{P \sqrt{M}}\right)$
- Memory-independent parallel lower bound on bandwidth $=\Omega\left(\frac{n^{3}}{p^{\frac{2}{3}}}\right)$

LU factorization

LU factorization (Gaussian elimination):

- Convert a matrix A into product $L \times U$
- L is lower triangular with diagonal 1
- U is upper triangular
- L and U stored in place with A

LU Algorithm

For $k=1 \ldots n-1$:

- For $i=k+1 \ldots n$,
$A_{i, k} \leftarrow A_{i, k} / A_{k, k}$ (column/panel preparation)
- For $i=k+1 \ldots n$,

$$
\text { For } j=k+1 \ldots n \text {, }
$$

$$
A_{i, j} \leftarrow A_{i, j}-A_{i, k} A_{k, j} \text { (update) }
$$

Block LU factorization

Partition of a $n \times n$ matrix A

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)
$$

Here A_{11} is of size $b \times b, A_{21}$ is of size $(n-b) \times b, A_{12}$ is of size $b \times(n-b)$ and A_{22} is of size $(n-b) \times(n-b)$.

Structure of LU factorization algorithm

- The first iteration computes the factorization:

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)=\left(\begin{array}{ll}
L_{11} & \\
L_{21} & I_{n-b}
\end{array}\right)\left(\begin{array}{cc}
U_{11} & U_{12} \\
& A^{\prime}
\end{array}\right)
$$

- The algorithm continues recursively on the trailing matrix A^{\prime}.

Block LU factorization

(1) Compute the LU factorization of the first block column

$$
\binom{A_{11}}{A_{21}}=\binom{L_{11}}{L_{21}} U_{11}
$$

(2) Solve the triangular system

$$
L_{11} U_{12}=A_{12}
$$

(3) Update the trailing matrix

$$
A^{\prime}=A_{22}-L_{21} U_{12}
$$

(9) Compute recursively the block LU factorization of A^{\prime}

Table of Contents

(1) Singular value decomposition
(2) LU factorization
(3) QR factorization

Terminology related to QR factorization

An orthogonal matrix Q satisfies $Q^{T} Q=Q Q^{T}=I$ (the identity matrix)

- Q must be square
- Q's rows are orthogonal to each other and have unit norm
- Q's columns are orthogonal to each other and have unit norm

Terminology related to QR factorization

An orthogonal matrix Q satisfies $Q^{T} Q=Q Q^{T}=I$ (the identity matrix)

- Q must be square
- Q's rows are orthogonal to each other and have unit norm
- Q's columns are orthogonal to each other and have unit norm

A matrix U has orthonormal columns if $U^{T} U=I$ (the identity matrix)

- U's columns are orthogonal to each other and have unit norm
- U can have more rows than columns, in which case $U U^{T} \neq 1$

Terminology related to QR factorization

An orthogonal matrix Q satisfies $Q^{T} Q=Q Q^{T}=I$ (the identity matrix)

- Q must be square
- Q's rows are orthogonal to each other and have unit norm
- Q's columns are orthogonal to each other and have unit norm

A matrix U has orthonormal columns if $U^{T} U=I$ (the identity matrix)

- U's columns are orthogonal to each other and have unit norm
- U can have more rows than columns, in which case $U U^{T} \neq 1$

Given a matrix A, we can orthogonalize its columns by finding a matrix Q such that

- Q's columns span the same space as A 's columns
- Q has orthonormal columns
- there exists a matrix Z such that $A=Q Z$

QR factorization

The QR factorization is a fundamental matrix factorization:

$$
A=Q R=\left[\begin{array}{ll}
\hat{Q} & \tilde{Q}
\end{array}\right]\left[\begin{array}{c}
\hat{R} \\
0
\end{array}\right]=\hat{Q} \hat{R}
$$

- if A is $m \times n, m \geq n$, then Q is $m \times m, R$ is $m \times n, \hat{Q}$ is $m \times n$, and \hat{R} is $n \times n$
- Q is orthogonal, \hat{Q} has orthonormal columns, and R is upper triangular
- \hat{Q} is an orthogonalization of A

Classical algorithms for QR factorization

(1) Gram-Schmidt process

- intuitive: each vector is orthogonalized against previous ones by subtracting out components of the vector in previous directions
- has numerical problems (vectors aren't always numerically orthonormal)
- two variants "classical" and "modified" are mathematically identical
(2) Householder QR
- uses orthogonal matrices to transform input to triangular form
- numerically stable

Gram-Schmidt

Classical Gram-Schmidt (CGS) process
Require: $A=\left[\begin{array}{llll}x_{1} & x_{2} & \cdots & x_{n}\end{array}\right]$
for $i=1$ to n do

$$
v_{i}=x_{i}
$$

for $j=1$ to $i-1$ do $r_{j i}=q_{j}^{T} x_{i} \quad \triangleright$ compute size of projection of i th col of A onto q_{j}
$v_{i}=v_{i}-r_{j i} q_{j} \quad \triangleright$ remove this component from vector v_{i}
end for
$r_{i i}=\left\|v_{i}\right\|_{2}$
$q_{i}=v_{i} / r_{i i} \quad \triangleright$ normalize vector
end for
Ensure: $Q=\left[\begin{array}{llll}q_{1} & q_{2} & \cdots & q_{n}\end{array}\right]$ has orthonormal columns
Ensure: R is upper triangular and $A=Q R$

Gram-Schmidt

Modified Gram-Schmidt (MGS) process

Require: $A=\left[\begin{array}{llll}x_{1} & x_{2} & \cdots & x_{n}\end{array}\right]$
for $i=1$ to n do

$$
v_{i}=x_{i}
$$

for $j=1$ to $i-1$ do $r_{j i}=q_{j}^{T} v_{i} \triangleright$ compute size of projection of current vector onto q_{j} $v_{i}=v_{i}-r_{j i} q_{j}$
\triangleright remove this component from vector v_{i}
end for

$$
\begin{aligned}
r_{i i} & =\left\|v_{i}\right\|_{2} \\
q_{i} & =v_{i} / r_{i i}
\end{aligned}
$$

\triangleright normalize vector
end for
Ensure: $Q=\left[\begin{array}{llll}q_{1} & q_{2} & \cdots & q_{n}\end{array}\right]$ has orthonormal columns
Ensure: R is upper triangular and $A=Q R$

Householder transformation

- v is a unit vector
- The reflection hyperplane can be defined by its normal vector v
- $\left(I-2 v v^{\top}\right) x$ is the reflection of point x with the hyperplane
- $P=I-2 v v^{\top}$ matrix is known as the Householder matrix
- P is symmetric and orthogonal, $P^{2}=I$

Main idea of Householder QR factorization

Look for a Householder matrix that annihilates the elements of a vector x, except first one:

$$
P x=y,\|x\|_{2}=\|y\|_{2}, y=\sigma e_{1}, \sigma= \pm\|x\|_{2}
$$

The choice of sign is made to avoid cancellation or small numerical values while computing $v_{1}=x_{1}-\sigma$. Here v_{1}, x_{1} are the first elements of vectors v, x respectively.

$$
\begin{aligned}
v & =x-y=x-\sigma e_{1} \\
\sigma & =-\operatorname{sign}(x 1)\|x\|_{2}, v=x-\sigma e_{1} \\
u & =\frac{v}{\|v\|_{2}}, P=I-2 u u^{T}
\end{aligned}
$$

Householder QR algorithm

Given vector x, a Householder transformation $I-2 u u^{T}$ maps x to σe_{1}

- u is called the Householder vector

Require: $A=\left[\begin{array}{llll}x_{1} & x_{2} & \cdots & x_{n}\end{array}\right]$
for $i=1$ to n do
Compute Householder vector u_{i} from x_{i}

$$
A=\left(I-2 u_{i} u_{i}^{T}\right) A \quad \triangleright \text { apply Householder transformation }
$$

end for
$R=A$
Ensure: $U=\left[\begin{array}{llll}u_{1} & u_{2} & \cdots & u_{n}\end{array}\right]$ is lower triangular Ensure: R is upper triangular and $A=\left(I-2 u_{1} u_{1}^{T}\right) \cdots\left(I-2 u_{n} u_{n}^{T}\right) R$

Householder QR computational complexity

Let $A \in \mathbb{R}^{m \times n}$, we count the number of operation to update A $\left(A=\left(I-2 u_{i} u_{i}^{T}\right) A=A-2 u_{i} u_{i}^{T} A\right)$ in each iteration i.

Operations per iteration

- Dot product $w=u_{i}^{T} A(i: m, i: n): 2(m-i)(n-i)$
- Outer product $u_{i} w:(m-i)(n-i)$
- Subtraction $A(i: m, i: n)=A(i: m, i: n)-2 u_{i} w:(m-i)(n-i)$

The number of operations to multiply 2 with w is $(n-i)$, however it is a lower order term. Hence we do not consider it explicitly.

Operations in Householder QR factorization

$$
\begin{aligned}
\sum_{i=1}^{n}= & 4(m-i)(n-i)=4 \sum_{i=1}^{n}=4\left(m n-(m+n) i+i^{2}\right) \\
& \approx 4 m n^{2}-4(m+n) \frac{n^{2}}{2}+4 \frac{n^{3}}{3}=2 m n^{2}-2 \frac{n^{3}}{3}
\end{aligned}
$$

QR factorization

- Q can be stored in compact representation
- Structure of block QR algorithm is similar to the block LU algorithm
- Matrix communication lower bounds are also valid for the Householder/CGS/MGS QR factorization

QR factorization algorithms

Algorithm	\# flops	\# words	stability
CGS	$2 m n^{2}+O\left(n^{3}\right)$	$O\left(m n^{2}\right)$	Okay
		$O\left(m n^{2}\right)$	Bad
MGS		$O\left(m n^{2}\right)$	Good

Table of Contents

(1) Singular value decomposition
(2) LU factorization
(3) QR factorization

- Tall Skinny QR (TSQR) factorization

TSQR: QR factorization of a tall skinny matrix

 QR factorization of a $m \times n$ matrix with $m \gg n$The goal and process of Householder QR:

- annihilate entries below diagonal to obtain upper triangular form
- work column-by-column, left-to-right

Tall-Skinny QR idea (Demmel, Grigori, Hoemmen, Langou '12):

- change the order of annihilation to minimize communication
- work row-by-row, top to bottom

Algebra of TSQR

$$
\begin{aligned}
& A=\left(\begin{array}{l}
A_{1} \\
A_{2} \\
A_{3} \\
A_{4}
\end{array}\right)=\left(\begin{array}{l}
\mathrm{Q}_{1}^{(2)} \mathrm{R}_{1}^{(2)} \\
\mathrm{Q}_{2}^{(2)} \mathrm{R}_{2}^{(2)} \\
\mathrm{Q}_{3}^{(2)} \mathrm{R}_{3}^{(2)} \\
\mathrm{Q}_{4}^{(2)} \mathrm{R}_{4}^{(2)}
\end{array}\right)=\left(\begin{array}{llll}
\mathrm{Q}_{1}^{(2)} & & & \\
& \mathrm{Q}_{2}^{(2)} & & \\
& & \mathrm{Q}_{3}^{(2)} & \\
& & & \mathrm{Q}_{4}^{(2)}
\end{array}\right)\left(\begin{array}{l}
\mathrm{R}_{1}^{(2)} \\
\mathrm{R}_{2}^{(2)} \\
\mathrm{R}_{3}^{(2)} \\
\mathrm{R}_{4}^{(2)}
\end{array}\right) \\
& \left(\begin{array}{l}
R_{1}^{(2)} \\
R_{2}^{(2)} \\
R_{3}^{(2)} \\
R_{4}^{(2)}
\end{array}\right)=\binom{Q_{1}^{(1)} R_{1}^{(1)}}{Q_{2}^{(1)} R_{2}^{(1)}}=\left(\begin{array}{ll}
Q_{1}^{(1)} & \\
& Q_{2}^{(1)}
\end{array}\right)\binom{R_{1}^{(1)}}{R_{2}^{(1)}}, \quad\binom{R_{1}^{(1)}}{R_{2}^{(1)}}=Q_{1}^{(0)} R_{1}^{(0)}
\end{aligned}
$$

Q is represented implicitly as a product.

Flexibility of TSQR

Parallel TSQR

- Assuming block row layout on P processors
- Communication cost is that of binomial-tree reduction: $\beta \cdot O\left(n^{2} \log P\right)+\alpha \cdot O(\log P)$

Sequential TSQR

- Assuming cache size is $\Omega\left(n^{2}\right)$
- It streams through matrix once achieving $O(m n)$ amount of data transfers

