Symmetric computations

Suraj Kumar
Inria \& ENS Lyon
Email:suraj.kumar@inria.fr

CR12: September 2023
https://surakuma.github.io/courses/daamtc.html

Symmetric Rank-K (SYRK) update

$C=A \cdot A^{T}$, where A is an $n_{1} \times n_{2}$ matrix and C is an $n_{1} \times n_{1}$ symmetric matrix.

- It multiplies a matrix with its transpose
- It requires roughly half of the computation of general matrix multiplication due to symmetry
- $C_{i j}=\sum_{k=0}^{n_{2}-1} A_{i k} A_{j k}$ for $0 \leq j \leq i \leq n_{1}$

SYRK pseudo code:
SYRK iteration space:

$$
\begin{aligned}
& \text { for } i=0: n_{1}-1 \\
& \qquad \text { for } j=0: i \\
& \quad \text { for } k=0: n_{2}-1 \\
& \quad C[i][j]+=A[j][k] * A[j][k]
\end{aligned}
$$

Here we assume that each $C[i][j]$ is initialized to 0 in the beginning.

Loomis-Whitney inequalitiy

- For the 2d object $G, \operatorname{Area}(G) \leq \phi_{x} \phi_{y}$
- For the 3d object H, $\operatorname{Volume}(H) \leq \sqrt{\phi_{x y} \phi_{y z} \phi_{x z}}$

Lemma

Let $V \in \mathbb{Z}^{3}$ and $\phi_{i j}(V)$ be the projection of V on the $i-j$ plane, i.e., $\phi_{i j}(V)=\{(i, j): \exists k,(i, j, k) \in V\}$. Similarly $\phi_{j k}(V)$ and $\phi_{i k}(V)$ are defined. Then

$$
|V| \leq\left|\phi_{i j}(V)\right|^{\frac{1}{2}}\left|\phi_{j k}(V)\right|^{\frac{1}{2}}\left|\phi_{i k}(V)\right|^{\frac{1}{2}} .
$$

Extension of Loomis-Whitney inequality

Theorem (Lemma 3, Ballard et al., SPAA 2023.)

Let $V=\left\{(i, j, k) \in \mathbb{Z}^{3}: j<i\right\}$ and $\phi_{i j}(V)$ be the projection of V on the $i-j$ plane, i.e., $\phi_{i j}(V)=\{(i, j): \exists k,(i, j, k) \in V\}$. Similarly $\phi_{j k}(V)$ and $\phi_{i k}(V)$ are defined. Then

$$
2|V| \leq\left|\phi_{j k}(V) \cup \phi_{i k}(V)\right|\left(2\left|\phi_{i j}(V)\right|\right)^{\frac{1}{2}} .
$$

$$
\begin{aligned}
& \text { Proof: Let } \tilde{V}=\left\{(i, j, k) \in \mathbb{Z}^{3}:(j, i, k) \in V\right\} . \\
& |V|=|\tilde{V}| \text { and }|V \cup \tilde{V}|=2|V| \\
& \phi_{i j}(\tilde{V})=\left\{(i, j):(j, i) \in \phi_{i j}(V)\right\} \text { and } \\
& \left|\phi_{i j}(V) \cup \phi_{i j}(\tilde{V})\right|=2\left|\phi_{i j}(V)\right| \\
& \phi_{j k}(\tilde{V})=\phi_{i k}(V), \phi_{i k}(\tilde{V})=\phi_{j k}(V) \text { and } \\
& \phi_{i k}(V \cup \tilde{V})=\phi_{j k}(V \cup \tilde{V})=\phi_{j k}(V) \cup \phi_{i k}(V)
\end{aligned}
$$

Applying the previous lemma (Loomis-Whitney inequality) on $V \cup \tilde{V}$ yields the mentioned inequality.

Parallel memory-independent communication lower bounds for SYRK

We focus on the computation of the entries below the diagonal of C.

$$
\begin{aligned}
& \text { for } i=0: n_{1}-1 \\
& \quad \text { for } j=0: i-1 \\
& \quad \text { for } k=0: n_{2}-1 \\
& \quad C[i][j]+=A[i][k] * A[j][k]
\end{aligned}
$$

- The computation is load balanced - each processor performs $\frac{n_{1}\left(n_{1}-1\right) n_{2}}{2 P}$ loop iterations
- One copy of data is in the system - there exists a processor whose input data at the start plus output data at the end must be at most $\frac{n_{1}\left(n_{1}-1\right) / 2+n_{1} n_{2}}{P}$ words
- Will analyze data transfers for this processor
- F be the set of indices (i, j, k) associated with loop iterations performed on this processor

Optimization problem to compute communication lower bound

$$
\begin{aligned}
& \text { Minimize }\left|\phi_{i k}(F) \cup \phi_{j k}(F)\right|+\left|\phi_{i j}(F)\right| \text { s.t. } \\
& \left(2\left|\phi_{i j}(F)\right|\right)^{\frac{1}{2}}\left|\phi_{i k}(F) \cup \phi_{j k}(F)\right| \geq 2|F|=\frac{n_{1}\left(n_{1}-1\right) n_{2}}{P}
\end{aligned}
$$

$\left|\phi_{i k}(F) \cup \phi_{j k}(F)\right|:$ number of accessed entries of A
$\left|\phi_{i j}(F)\right|$: number of accessed entries of C

- Using Lagrange multipliers, optimal value obtained when

$$
\left|\phi_{i k}(F) \cup \phi_{j k}(F)\right|=2\left|\phi_{i j}(F)\right|=\left(\frac{n_{1}\left(n_{1}-1\right) n_{2}}{P}\right)^{\frac{2}{3}}
$$

- Lower bound $=\left|\phi_{i k}(F) \cup \phi_{j k}(F)\right|+\left|\phi_{i j}(F)\right|$ - data owned by the processor

$$
=\frac{3}{2}\left(\frac{n_{1}\left(n_{1}-1\right) n_{2}}{P}\right)^{\frac{2}{3}}-\frac{n_{1}\left(n_{1}-1\right) / 2+n_{1} n_{2}}{P}
$$

Symmetric Rank-2k (SYR2K) update

$C=A \cdot B^{T}+B \cdot A^{T}$, where A and B are $n_{1} \times n_{2}$ matrices. C is an $n_{1} \times n_{1}$ symmetric matrix.

SYR2K pseudo code:

$$
\begin{aligned}
& \text { for } i=0: n_{1}-1 \\
& \text { for } j=0: i \\
& \quad \text { for } k=0: n_{2}-1 \\
& \quad C[i][j]+=A[i][k] * B[j][k]+A[j][k] * B[i][k]
\end{aligned}
$$

Assignment 3 - deadline Oct 5

Question: Obtain parallel memory-independent communication lower bound for SYR2K. Assume that all the operations of each loop iteration are performed on the same processor, i.e, $A[i][k] * B[j][k]$ and $A[j][k] * B[i][k]$ are computed on one processor.

