Introduction to Tensors

Suraj Kumar

Inria \& ENS Lyon

Email:suraj.kumar@inria.fr
CR12: September 2023
https://surakuma.github.io/courses/daamtc.html

Tensors (multidimensional arrays)

- Neuroscience: measure of calcium fluorescence in a particular pixel during a time step of a single trial (Pixel \times Time \times Trial)
- Combustion simulation: value of a variable in a spatial grid during a time step (Grid length \times Grid width \times Grid height \times Variable \times Time)
- Media: rating of a movie by a user during a time slice (User \times Movie \times Time)
- Molecular/quantum simulations: interaction of electrons in d orbitals with a 4^{d} tensor

Notation convention: Matrix A, tensor \mathcal{A}

Table of Contents

(1) Tensor notations and some definitions

Tensor notations (following [Kolda and Bader, 2009])

Let \mathcal{A} be a d-dimensional tensor of size $n_{1} \times n_{2} \times \cdots \times n_{d}, \mathcal{A} \in \mathbb{R}^{n_{1} \times n_{2} \times \cdots \times n_{d}}$.

- $d=1$, first order tensors: vectors
- $d=2$, second order tensors: matrices

The element of \mathcal{A} is denoted as $\mathcal{A}\left(i_{1}, i_{2}, \ldots, i_{d}\right)$.

- Fibers: defined by fixing all indices except one
- Slices: defined by fixing all indices except two

Mode-1 (column) fibers: $\mathcal{A}(:, j, k)$, Mode-2 (row) fibers: $\mathcal{A}(i,:, k)$ and Mode-3 (tube) fibers: $\mathcal{A}(i, j,:)$ of a 3-dimensional tensor \mathcal{A}.

Figures from [Kolda and Bader, 2009].

Tensor preliminaries

- The norm of a tensor $\mathcal{A} \in \mathbb{R}^{n_{1} \times n_{2} \times \cdots \times n_{d}}$ is analogous to the matrix Frobenius norm, and defined as

$$
\|\mathcal{A}\|=\sqrt{\sum_{i_{1}=1}^{n_{1}} \sum_{i_{2}=1}^{n_{2}} \cdots \sum_{i_{d}=1}^{n_{d}} \mathcal{A}^{2}\left(i_{1}, i_{2}, \cdots, i_{d}\right)}
$$

- The inner product of $\mathcal{A}, \mathcal{B} \in \mathbb{R}^{n_{1} \times n_{2} \times \cdots \times n_{d}}$ is

$$
\langle\mathcal{A}, \mathcal{B}\rangle=\sum_{i_{1}=1}^{n_{1}} \sum_{i_{2}=1}^{n_{2}} \cdots \sum_{i_{d}=1}^{n_{d}} \mathcal{A}\left(i_{1}, i_{2}, \cdots, i_{d}\right) \mathcal{B}\left(i_{1}, i_{2}, \cdots, i_{d}\right)
$$

We can note that $\langle\mathcal{A}, \mathcal{A}\rangle=\|\mathcal{A}\|^{2}$.

Specific tensors

- A rank one tensor $\mathcal{A} \in \mathbb{R}^{n_{1} \times n_{2} \times \cdots \times n_{d}}$ can be written as the outer product of d vectors,

$$
\begin{gathered}
\mathcal{A}=u_{1} \circ u_{2} \circ \cdots \circ u_{d} \\
\mathcal{A}\left(i_{1}, i_{2}, \cdots, i_{d}\right)=u_{1}\left(i_{1}\right) u_{2}\left(i_{2}\right) \cdots u_{d}\left(i_{d}\right) \text { for all } 1 \leq i_{k} \leq n_{k}
\end{gathered}
$$

- A cubical tensor $\mathcal{A} \in \mathbb{R}^{n_{1} \times n_{2} \times \cdots \times n_{d}}$ has same size in every mode,

$$
n_{1}=n_{2}=\cdots=n_{d}
$$

- A supersymmetric (or symmetric) tensor has the same element for any permutation of the indices
- A diagonal tensor $\mathcal{A} \in \mathbb{R}^{n_{1} \times n_{2} \times \cdots \times n_{d}}$ has $\mathcal{A}\left(i_{1}, i_{2}, \cdots, i_{d}\right) \neq 0$ only if $i_{1}=i_{2}=\cdots=i_{d}$

Matricization or Unfolding of a tensor into a matrix

- The mode- j unfolding of $\mathcal{A} \in \mathbb{R}^{n_{1} \times n_{2} \times \cdots \times n_{d}}$ is represented by a matrix $A_{(j)} \in \mathbb{R}^{n_{j} \times n}$, where $n=n_{1} n_{2} \cdots n_{j-1} n_{j+1} \cdots n_{d}$
- Tensor element $\mathcal{A}\left(i_{1}, i_{2}, \cdots, i_{d}\right)$ maps to matrix element $A_{(j)}\left(i_{j}, k\right)$, where $k=1+\sum_{\ell=1, \ell \neq j}^{d}\left(i_{\ell}-1\right) N_{\ell}$ with $N_{\ell}=\prod_{m=1, m \neq j}^{\ell-1} n_{m}$
Example with the frontal slices of $\mathcal{A} \in \mathbb{R}^{4 \times 2 \times 3}$:

$$
\mathcal{A}(:,:, 1)=\left(\begin{array}{ll}
1 & 5 \\
2 & 6 \\
3 & 7 \\
4 & 8
\end{array}\right), \mathcal{A}(:,:, 2)=\left(\begin{array}{cc}
9 & 13 \\
10 & 14 \\
11 & 15 \\
12 & 16
\end{array}\right), \mathcal{A}(:,:, 3)=\left(\begin{array}{ll}
17 & 21 \\
18 & 22 \\
19 & 23 \\
20 & 24
\end{array}\right)
$$

The three mode-j unfoldings are:

$$
\begin{gathered}
A_{(1)}=\left(\begin{array}{cccccc}
1 & 5 & 9 & 13 & 17 & 21 \\
2 & 6 & 10 & 14 & 18 & 22 \\
3 & 7 & 11 & 15 & 19 & 23 \\
4 & 8 & 12 & 16 & 20 & 24
\end{array}\right), A_{(3)}=\left(\begin{array}{ccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
17 & 18 & 19 & 20 & 21 & 22 & 23 & 24
\end{array}\right), \\
A_{(2)}=\left(\begin{array}{ccccccccccc}
1 & 2 & 3 & 4 & 9 & 10 & 11 & 12 & 17 & 18 & 19 \\
5 & 6 & 7 & 8 & 13 & 14 & 15 & 16 & 21 & 22 & 23 \\
24
\end{array}\right)
\end{gathered}
$$

Assignment 4 - deadline Oct 10

Question: Write a program in your preferred programming language to obtain mode-3 unfolding of $\mathcal{A} \in \mathbb{R}^{3 \times 3 \times 3}$. Elements of \mathcal{A} are defined in the following way:

$$
\mathcal{A}(i, j, k)=i+j^{2}+k^{3} \text { for } 1 \leq i, j, k \leq 3 .
$$

If your preferred language supports 0 -based indexing then you can consider $0 \leq i, j, k \leq 2$.

Submission procedure: Send your code to my ENS email address (suraj.kumar@ens-lyon.fr) by Oct 10.

Tensor multiplication (contraction) along j-mode with a matrix

The j-mode product of $\mathcal{A} \in \mathbb{R}^{n_{1} \times n_{2} \times \cdots \times n_{d}}$ with $U \in \mathbb{R}^{K \times n_{j}}$ is denoted by $\mathcal{A} \times{ }_{j} U$ and is of size $n_{1} \times \cdots n_{j-1} \times K \times n_{j+1} \times \cdots \times n_{d}$.

$$
\left(\mathcal{A} \times \times_{j} U\right)\left(i_{1}, \cdots, i_{j-1}, k, i_{j+1}, \cdots i_{d}\right)=\sum_{i_{j}=1}^{n_{j}} \mathcal{A}\left(i_{1}, \cdots, i_{d}\right) U\left(k, i_{j}\right)
$$

This is also known as tensor-times-matrix (TTM) operation in the j th mode. In terms of unfolded tensors:

$$
\mathcal{B}=\mathcal{A} \times_{j} U \Leftrightarrow B_{(j)}=U A_{(j)}
$$

Some properties of j-mode products:

- $\mathcal{A} \times_{j} U \times_{k} V=\mathcal{A} \times_{k} V \times_{j} U \quad(j \neq k)$
- $\mathcal{A} \times_{j} U \times_{j} V=\mathcal{A} \times_{j} V U$

Matrix products

- The Kronecker product of $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{p \times q}$ is $C \in \mathbb{R}^{m p \times n q}$,

$$
C=A \otimes B=\left(\begin{array}{ccc}
A(1,1) B & \cdots & A(1, n) B \\
\vdots & \ddots & \vdots \\
A(m, 1) B & \cdots & A(m, n) B
\end{array}\right)
$$

- The Khatri-Rao product of $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{p \times n}$ is $C \in \mathbb{R}^{m p \times n}$,

$$
C=A \odot B=(A(:, 1) \otimes B(:, 1) \quad A(:, 2) \otimes B(:, 2) \quad \cdots \quad A(:, n) \otimes B(:, n))
$$

- The Hadamard product of $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{m \times n}$ is $C \in \mathbb{R}^{m \times n}$,

$$
C=A * B=\left(\begin{array}{ccc}
A(1,1) B(1,1) & \cdots & A(1, n) B(1, n) \\
\vdots & \ddots & \vdots \\
A(m, 1) B(m, 1) & \cdots & A(m, n) B(m, n)
\end{array}\right)
$$

Useful properties of matrix products

$$
\begin{gathered}
(A \otimes B)(C \otimes D)=A C \otimes B D \\
A \odot B \odot C=(A \odot B) \odot C=A \odot(B \odot C) \\
(A \odot B)^{T}(A \odot B)=A^{T} A * B^{T} B \\
(A \odot B)^{\dagger}=\left(\left(A^{T} A\right) *\left(B^{T} B\right)\right)^{\dagger}(A \odot B)^{T}
\end{gathered}
$$

Here A^{\dagger} denotes the Moore-Penrose pseudoinverse of A.

Let $\mathcal{A} \in \mathbb{R}^{n_{1} \times n_{2} \times \cdots \times n_{d}}$ and $U_{j} \in \mathbb{R}^{m_{j} \times n_{j}}$ for $1 \leq j \leq d$. Then,

$$
\begin{aligned}
\mathcal{B} & =\mathcal{A} \times_{1} U_{1} \times_{2} U_{2} \cdots \times_{d} U_{d} \\
& \Leftrightarrow B_{(j)}=U_{j} A_{(j)}\left(U_{d} \otimes \cdots U_{j+1} \otimes U_{j-1} \otimes \cdots \otimes U_{1}\right)^{T} .
\end{aligned}
$$

Table of Contents

(1) Tensor notations and some definitions

(2) Tensor decompositions

Recap on Singular Value Decomposition (SVD)

- It decomposes a matrix $A \in \mathbb{R}^{m \times n}$ to the form $U \Sigma V^{T}$
- U is an $m \times m$ orthogonal matrix
- V is an $n \times n$ orthogonal matrix
- Σ is an $m \times n$ rectangular diagonal matrix
- The diagonal entries $\sigma_{i}=\Sigma_{i i}$ of Σ are called singular values
- $\sigma_{i} \geq 0$ and $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{\min (m, n)}$
- The largest r such that $\sigma_{r} \neq 0$ is called the rank of the matrix
- SVD represents a matrix as the sum of r rank one matrices

$+\cdots+$

Tensor decompositions

Popular higher-order extension of the matrix SVD:

- CANDECOMP/PARAFAC (CP) : proposed by Hitchcock in 1927
- Tucker decomposition: proposed by Tucker in 1963
- Tensor train decomposition: proposed by Oseledets in 2011, known in quantum chemistry community from a long time with the name of matrix product states

CP and Tucker decompositions are well suited to work with small and moderate dimension tensors $(d \leq 10)$. Tensor train is preferred for high dimension tensors.

CP decomposition of $\mathcal{A} \in \mathbb{R}^{n_{1} \times n_{2} \times \cdots \times n_{d}}$

It factorizes a tensor into a sum of rank one tensors.

CP decomposition of a 3-dimensional tensor.

$$
\begin{gathered}
\mathcal{A}=\sum_{\alpha=1}^{r} U_{1}(:, \alpha) \circ U_{2}(:, \alpha) \circ \cdots \circ U_{d}(:, \alpha) \\
\mathcal{A}\left(i_{1}, \cdots, i_{d}\right)=\sum_{\alpha=1}^{r} U_{1}\left(i_{1}, \alpha\right) U_{2}\left(i_{2}, \alpha\right) \cdots U_{d}\left(i_{d}, \alpha\right)
\end{gathered}
$$

The minimum r required to express \mathcal{A} is called the rank of \mathcal{A}. The matrices $U_{j} \in \mathbb{R}^{n_{j} \times r}$ for $1 \leq j \leq d$ are called factor matrices.

- (+) The number of entries in a CP decomposition of $\mathcal{A}=\mathcal{O}\left(\left(n_{1}+\cdots+n_{d}\right) r\right)$
- (-) Determining the minimum value of r is an NP-complete problem
- (-) No robust algorithms to compute this representation

Tucker decomposition of $\mathcal{A} \in \mathbb{R}^{n_{1} \times n_{2} \times \cdots \times n_{d}}$

It represents a tensor with d matrices (usually orthogonal) and a small core tensor.

Tucker decomposition of a 3-dimensional tensor.

$$
\begin{gathered}
\mathcal{A}=\mathcal{G} \times_{1} U_{1} \cdots \times_{d} U_{d} \\
\mathcal{A}\left(i_{1}, \cdots, i_{d}\right)=\sum_{\alpha_{1}=1}^{r_{1}} \cdots \sum_{\alpha_{d}=1}^{r_{d}} \mathcal{G}\left(\alpha_{1}, \cdots, \alpha_{d}\right) U_{1}\left(i_{1}, \alpha_{1}\right) \cdots U_{d}\left(i_{d}, \alpha_{d}\right)
\end{gathered}
$$

Here r_{j} for $1 \leq j \leq d$ denote a set of ranks. Matrices $U_{j} \in \mathbb{R}^{n_{j} \times r_{j}}$ for $1 \leq j \leq d$ are called factor matrices. The tensor $\mathcal{G} \in \mathbb{R}^{r_{1} \times r_{2} \times \cdots \times r_{d}}$ is called the core tensor.

- (+) SVD based stable algorithms to compute this decomposition
- (-) The number of entries $=\mathcal{O}\left(n_{1} r_{1}+\cdots+n_{d} r_{d}+\prod_{j=1}^{d} r_{j}\right)$

Tensor Train (TT) decomposition: Product of matrices view

- A d-dimensional tensor is represented with 2 matrices and d-2 3-dimensional tensors.

$$
\mathbf{A}\left(i_{1}, i_{2}, \cdots, i_{d}\right)=\mathbf{G}_{1}\left(i_{1}\right) \mathbf{G}_{2}\left(i_{2}\right) \cdots \mathbf{G}_{d}\left(i_{d}\right)
$$

An entry of $\mathcal{A} \in \mathbb{R}^{n_{1} \times \cdots \times n_{d}}$ is computed by multiplying corresponding matrix (or row/column) of each matrix/tensor.

Tensor Train decomposition

$\mathcal{A} \in \mathbb{R}^{n_{1} \times \cdots \times n_{d}}$ is represented with cores $\mathcal{G}_{k} \in \mathbb{R}^{r_{k-1} \times n_{k} \times r_{k}}, k=1,2, \cdots d$, $r_{0}=r_{d}=1$ and its elements satisfy the following expression:

$$
\begin{aligned}
\mathcal{A}\left(i_{1}, \cdots, i_{d}\right) & =\sum_{\alpha_{0}=1}^{r_{0}} \cdots \sum_{\alpha_{d}=1}^{r_{d}} \mathcal{G}_{1}\left(\alpha_{0}, i_{1}, \alpha_{1}\right) \cdots \mathcal{G}_{d}\left(\alpha_{d-1}, i_{d}, \alpha_{d}\right) \\
& =\sum_{\alpha_{1}=1}^{r_{1}} \cdots \sum_{\alpha_{d-1}=1}^{r_{d-1}} \mathcal{G}_{1}\left(1, i_{1}, \alpha_{1}\right) \cdots \mathcal{G}_{d}\left(\alpha_{d-1}, i_{d}, 1\right) \\
i_{1} \alpha_{1} & \alpha_{1}
\end{aligned}
$$

The ranks r_{k} are called TT-ranks.

- The number of entries in this decomposition $=$

$$
\mathcal{O}\left(n_{1} r_{1}+n_{2} r_{1} r_{2}+n_{3} r_{2} r_{3}+\cdots+n_{d-1} r_{d-2} r_{d-1}+n_{d} r_{d-1}\right)
$$

