Low rank approximations of tensors

Suraj Kumar
Inria \& ENS Lyon
Email:suraj.kumar@inria.fr
CR12: October 2023
https://surakuma.github.io/courses/daamtc.html

Properties of matrix Frobenius norm for real matrices

$$
\begin{gathered}
\|A\|_{F}^{2}=\sum_{i, j} A^{2}(i, j)=\operatorname{Trace}\left(A A^{T}\right)=\operatorname{Trace}\left(A^{T} A\right) \\
\|A+B\|_{F}^{2}=\|A\|_{F}^{2}+\|B\|_{F}^{2}+2\langle A, B\rangle_{F}
\end{gathered}
$$

Here $\langle A, B\rangle_{F}$ is known as Frobenius inner product and defined as $\langle A, B\rangle_{F}=\operatorname{Trace}\left(A^{T} B\right)=\operatorname{Trace}\left(B^{T} A\right)$.

If Q is an orthonormal matrix then,

$$
\begin{gathered}
\|A\|_{F}^{2}=\left\|Q Q^{T} A\right\|_{F}^{2}+\left\|\left(I-Q Q^{T}\right) A\right\|_{F}^{2} \\
\|Q C\|_{F}=\|C\|_{F} \\
\left\|Q^{T} A\right\|_{F}=\left\|Q Q^{T} A\right\|_{F} \leq\|A\|_{F} \\
\left\langle A-Q Q^{T} A, Q Q^{T} A\right\rangle_{F}=0
\end{gathered}
$$

Tensor norm

- The norm of a tensor $\mathcal{A} \in \mathbb{R}^{n_{1} \times n_{2} \times \cdots \times n_{d}}$ is analogous to the matrix Frobenius norm, and defined as

$$
\|\mathcal{A}\|_{F}=\sqrt{\sum_{i_{1}=1}^{n_{1}} \sum_{i_{2}=1}^{n_{2}} \cdots \sum_{i_{d}=1}^{n_{d}} \mathcal{A}^{2}\left(i_{1}, i_{2}, \cdots, i_{d}\right)}
$$

We will only focus on Frobenius norm in this course.

Singular Value Decomposition (SVD)

- It decomposes a matrix $A \in \mathbb{R}^{m \times n}$ to the form $U \Sigma V^{T}$
- U is an $m \times m$ orthogonal matrix
- V is an $n \times n$ orthogonal matrix
- Σ is an $m \times n$ rectangular diagonal matrix
- The diagonal entries $\sigma_{i}=\Sigma_{i i}$ of Σ are called singular values
- $\sigma_{i} \geq 0$ and $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{\min (m, n)}$
- The largest r such that $\sigma_{r} \neq 0$ is called the rank of the matrix
- SVD represents a matrix as the sum of r rank one matrices

$+\cdots+$

Low rank approximations of matrices using SVD

$$
\text { SVD decomposition: } A=U \Sigma V^{\top}
$$

Let u_{i} and v_{i} be the column vectors of U and V, respectively.

r^{\prime}-rank approximation

If $\tilde{A}=\sum_{i=1}^{r^{\prime}} \sigma_{i} u_{i} v_{i}^{T}$, then \tilde{A} is an r^{\prime}-rank approximation of A.

$$
\|A-\tilde{A}\|_{F}^{2}=\sum_{i=r^{\prime}+1}^{\min (m, n)} \sigma_{i}^{2}
$$

SVD gives the best r^{\prime}-rank approximation of any matrix.

Approximation for ϵ accuracy

We select minimum r^{\prime} such that $\sum_{i=r^{\prime}+1}^{\min (m, n)} \sigma_{i}^{2} \leq \epsilon^{2}$. The approximation is $\tilde{A}=\sum_{i=1}^{r^{\prime}} \sigma_{i} u_{i} v_{i}^{T}$.

$$
\|A-\tilde{A}\|_{F}^{2}=\sum_{i=r^{\prime}+1}^{\min (m, n)} \sigma_{i}^{2} \leq \epsilon^{2}
$$

Properties of SVD

The SVD of $A \in \mathbb{R}^{m \times n}$ can be written as $A=U \Sigma V^{T}$. Here $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal matrices and $\Sigma \in \mathbb{R}^{m \times n}$ is a rectangular diagonal matrix.

- Columns of U are also eigen vectors of $A A^{T}$
- Similarly, columns of V are eigen vectors of $A^{T} A$
- If $\sigma_{i}>0$ is a singular value of A then σ_{i}^{2} is an eigen value of $A A^{T}$ and $A^{T} A$ $\Sigma \Sigma^{T}$ and $\Sigma^{T} \Sigma$ are diagonal matrices. Their diagonal entries are the eigen values of $A A^{T}$ and $A^{T} A$, respectively.
We can also express SVD as

$$
A=\left(\begin{array}{ll}
U_{1} & U_{2}
\end{array}\right)\left(\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & \Sigma_{2}
\end{array}\right)\left(V_{1} V_{2}\right)^{T}=U_{1} \Sigma_{1} V_{1}^{T}+U_{2} \Sigma_{2} V_{2}^{T}
$$

This is equivalent to

$$
A=U_{1} U_{1}^{T} A+U_{2} U_{2}^{T} A=A V_{1} V_{1}^{T}+A V_{2} V_{2}^{T}
$$

Table of Contents

(1) CP decomposition
(2) Tucker decomposition
(3) Tensor Train decomposition

4 Compact representations of tensor operations
(5) Miscellaneous

CP decomposition of $\mathcal{A} \in \mathbb{R}^{n_{1} \times n_{2} \times \cdots \times n_{d}}$

It factorizes a tensor into a sum of rank one tensors.

CP decomposition of a 3-dimensional tensor.

$$
\mathcal{A}=\sum_{\alpha=1}^{r} U_{1}(:, \alpha) \circ U_{2}(:, \alpha) \circ \cdots \circ U_{d}(:, \alpha)
$$

It can be concisely expressed as $\mathcal{A}=\llbracket U_{1}, U_{2}, \cdots, U_{d} \rrbracket$. CP decomposition for a 3-dimensional tensor in matricized form can be written as:

$$
A_{(1)}=U_{1}\left(U_{3} \odot U_{2}\right)^{T}, A_{(2)}=U_{2}\left(U_{3} \odot U_{1}\right)^{T} A_{(3)}=U_{3}\left(U_{2} \odot U_{1}\right)^{T} .
$$

It is useful to assume that $U_{1}, U_{2} \cdots U_{d}$ are normalized to length one with the weights given in a vector $\lambda \in \mathbb{R}^{r}$.

$$
\mathcal{A}=\llbracket \lambda ; U_{1}, U_{2}, \cdots, U_{d} \rrbracket=\sum_{\alpha=1}^{r} \lambda_{\alpha} U_{1}(:, \alpha) \circ U_{2}(:, \alpha) \circ \cdots \circ U_{d}(:, \alpha)
$$

Tensor rank

$$
\mathcal{A}=\sum_{\alpha=1}^{r} \lambda_{\alpha} U_{1}(:, \alpha) \circ U_{2}(:, \alpha) \circ \cdots \circ U_{d}(:, \alpha)
$$

- The minimum r required to express \mathcal{A} is called the rank of \mathcal{A}

The rank of a real-valued tensor may be different over \mathbb{R} and \mathbb{C}. For example, consider the frontal slices of $\mathcal{A} \in \mathbb{R}^{2 \times 2 \times 2}$

$$
\mathcal{A}(:,:, 1)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \text { and } \mathcal{A}(:,:, 2)=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) .
$$

This has rank three over \mathbb{R} and two over \mathbb{C}. The CP decomposition over \mathbb{R} has the following factor matrices:

$$
U_{1}=\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -1
\end{array}\right), U_{2}=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right), \text { and } U_{3}=\left(\begin{array}{ccc}
1 & 1 & 0 \\
-1 & 1 & 1
\end{array}\right) .
$$

The CP decomposition over \mathbb{C} has the following factor matrices:

$$
U_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
-i & i
\end{array}\right), U_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
i & -i
\end{array}\right), \text { and } U_{3}=\left(\begin{array}{cc}
1 & 1 \\
i & -i
\end{array}\right) .
$$

Rank and low-rank approximations

- Determining the rank of a tensor is an NP-complete problem
- If $\mathcal{A}=\sum_{\alpha=1}^{r} \lambda_{\alpha} U_{1}(:, \alpha) \circ U_{2}(:, \alpha) \circ \cdots \circ U_{d}(:, \alpha)$, summing $k<r$ terms may not yield a best rank- k approximation
- Possible that the best rank- k approximation of a tensor may not exist

CP decomposition: example

Let $\mathcal{A} \in \mathbb{R}^{2 \times 4 \times 3}$ and $A=\llbracket U_{1}, U_{2}, U_{3} \rrbracket$. The rank of \mathcal{A} is 2 .

$$
U_{1}=\left(\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right), \quad U_{2}=\left(\begin{array}{ll}
1 & 4 \\
2 & 5 \\
4 & 6 \\
3 & 7
\end{array}\right), \quad U_{3}=\left(\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right)
$$

Computation of $\mathcal{A}(2,3,1)$,

$$
\begin{aligned}
\mathcal{A}(2,3,1) & =\sum_{\alpha=1}^{2} U_{1}(2, \alpha) U_{2}(3, \alpha) U_{3}(1, \alpha) \\
& =2 \cdot 4 \cdot 1+4 \cdot 6 \cdot 4=104
\end{aligned}
$$

\mathcal{A} has total 24 elements, while the CP representation has 18 elements.

Table of Contents

(1) CP decomposition

- Computing CP with Alternating Least Squares
(2) Tucker decomposition
- Computing Tucker decomposition
(3) Tensor Train decomposition
- Computing Tensor Train decomposition

4 Compact representations of tensor operations
(3) Miscellaneous

- Research topics/articles for the project
- Randomized SVD
- Strassen's algorithm: application of CP-decomposition

CP optimization problem for a 3-dimensional tensor

For fixed rank k, we want to solve

$$
\min _{U_{1}, U_{2} U_{3}}\left\|\mathcal{A}-\sum_{\alpha=1}^{k} \lambda_{\alpha} U_{1}(:, \alpha) \circ U_{2}(:, \alpha) \circ U_{3}(:, \alpha)\right\|_{F} .
$$

- It is a nonlinear, nonconvex optimization problem
- In the matrix case, the SVD provides us the optimal solution
- In the tensor case, convergence to optimum not guaranteed

Alternating Least Squares (ALS) method

Fixing all but one factor matrix, we have a linear least squares problem:

$$
\min _{\hat{U}_{1}}\left\|\mathcal{A}-\sum_{\alpha=1}^{k} \hat{U}_{1}(:, \alpha) \circ U_{2}(:, \alpha) \circ U_{3}(:, \alpha)\right\|_{F}
$$

or equivalently

$$
\min _{\hat{U}_{1}}\left\|A_{(1)}-\hat{U}_{1}\left(U_{3} \odot U_{2}\right)^{T}\right\|_{F}
$$

ALS works by alternating over factor matrices, updating one at a time.

CP-ALS algorithm

Repeat until maximum iterations reached or no further improvement obtained
(1) Solve $U_{1}\left(U_{3} \odot U_{2}\right)^{T}=A_{(1)}$ for $U_{1} \Rightarrow U_{1}=A_{(1)}\left(U_{3} \odot U_{2}\right)\left(U_{3}^{T} U_{3} * U_{2}^{T} U_{2}\right)^{\dagger}$
(2) Normalize columns of U_{1}
(3) Solve $U_{2}\left(U_{3} \odot U_{1}\right)^{T}=A_{(2)}$ for $U_{2} \Rightarrow U_{2}=A_{(2)}\left(U_{3} \odot U_{1}\right)\left(U_{3}^{T} U_{3} * U_{1}^{T} U_{1}\right)^{\dagger}$
(9) Normalize columns of U_{2}
(5) Solve $U_{3}\left(U_{2} \odot U_{1}\right)^{T}=A_{(3)}$ for $U_{3} \Rightarrow U_{3}=A_{(3)}\left(U_{2} \odot U_{1}\right)\left(U_{2}^{T} U_{2} * U_{1}^{T} U_{1}\right)^{\dagger}$
(c) Normalize columns of U_{3}

Here A^{\dagger} denotes the Moore-Penrose pseudoinverse of A. We use the following identity to get expressions for U_{1}, U_{2} and U_{3} :

$$
(A \odot B)^{T}(A \odot B)=A^{T} A * B^{T} B
$$

ALS for computing a CP decomposition

Algorithm 1 CP-ALS method to compute CP decomposition

Require: input tensor $\mathcal{A} \in \mathbb{R}^{n_{1} \times \cdots \times n_{d}}$, desired rank k, initial factor matrices $U_{j} \in \mathbb{R}^{n_{j} \times k}$ for $1 \leq j \leq d$
Ensure: $\llbracket \lambda ; U_{1}, \cdots, U_{d} \rrbracket$: a rank- $k C P$ decomposition of \mathcal{A} repeat
for $i=1$ to d do
$V \leftarrow U_{1}^{\top} U_{1} * \cdots * U_{i-1}^{\top} U_{i-1} U_{i+1}^{\top} U_{i+1} * \cdots * U_{d}^{\top} U_{d}$
$U_{i} \leftarrow A_{(i)}\left(U_{d} \odot \cdots \odot U_{i+1} \odot U_{i-1} \odot U_{1}\right)$
$U_{i} \leftarrow U_{i} V^{\dagger}$
$\lambda \leftarrow$ normalize colums of U_{i}

end for

until converge or the maximum number of iterations

- The collective operation $A_{(i)}\left(U_{d} \odot \cdots \odot U_{i+1} \odot U_{i-1} \odot U_{1}\right)$ is known as Matricized tensor times Khatri-Rao product (MTTKRP) computation
- U_{j} can be chosen randomly or by setting k left singular vectors of $A_{(j)}$ for $1 \leq j \leq d$

Table of Contents

(1) CP decomposition

(2) Tucker decomposition
(3) Tensor Train decomposition

4 Compact representations of tensor operations
(5) Miscellaneous

Tucker decomposition of $\mathcal{A} \in \mathbb{R}^{n_{1} \times n_{2} \times \cdots \times n_{d}}$

It represents a tensor with d matrices (usually orthonormal) and a small core tensor.

Tucker decomposition of a 3-dimensional tensor.

$$
\begin{gathered}
\mathcal{A}=\mathcal{G} \times_{1} U_{1} \cdots \times_{d} U_{d} \\
\mathcal{A}\left(i_{1}, \cdots, i_{d}\right)=\sum_{\alpha_{1}=1}^{r_{1}} \cdots \sum_{\alpha_{d}=1}^{r_{d}} \mathcal{G}\left(\alpha_{1}, \cdots, \alpha_{d}\right) U_{1}\left(i_{1}, \alpha_{1}\right) \cdots U_{d}\left(i_{d}, \alpha_{d}\right)
\end{gathered}
$$

It can be concisely expressed as $\mathcal{A}=\llbracket \mathcal{G} ; U_{1}, \cdots, U_{d} \rrbracket$.
Here r_{j} for $1 \leq j \leq d$ denote a set of ranks. Matrices $U_{j} \in \mathbb{R}^{n_{j} \times r_{j}}$ for $1 \leq j \leq d$ are usually orthonormal and known as factor matrices. The tensor $\mathcal{G} \in \mathbb{R}^{r_{1} \times r_{2} \times \cdots \times r_{d}}$ is called the core tensor.

Tucker decomposition: an example

Let $\mathcal{A} \in \mathbb{R}^{3 \times 3 \times 3}, \mathcal{G} \in \mathbb{R}^{2 \times 2 \times 2}$ and $\mathcal{A}=\llbracket \mathcal{G} ; U_{1}, U_{2}, U_{3} \rrbracket$.

$$
\begin{aligned}
& U_{1}=\frac{1}{3}\left(\begin{array}{cc}
2 & -2 \\
1 & 2 \\
2 & 1
\end{array}\right), \quad U_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right), \quad U_{3}=\frac{1}{5}\left(\begin{array}{ll}
0 & 4 \\
3 & 3 \\
4 & 0
\end{array}\right) \\
& \mathcal{G}(:,:, 1)=\left(\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right), \quad \mathcal{G}(:,:, 2)=\left(\begin{array}{ll}
7 & 10 \\
8 & 11 \\
9 & 12
\end{array}\right) \\
& \mathcal{A}(3,2,1)= \sum_{\alpha_{1}=1}^{2} \sum_{\alpha_{2}=1}^{2} \sum_{\alpha_{3}=1}^{2} \mathcal{G}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) U_{1}\left(3, \alpha_{1}\right) U_{2}\left(2, \alpha_{2}\right) U_{3}\left(1, \alpha_{3}\right) \\
&= \mathcal{G}(1,1,1) U_{1}(3,1) U_{2}(2,1) U_{3}(1,1)+\mathcal{G}(1,1,2) U_{1}(3,1) U_{2}(2,1) U_{3}(1,2) \\
&+\mathcal{G}(1,2,1) U_{1}(3,1) U_{2}(2,2) U_{3}(1,1)+\mathcal{G}(1,2,2) U_{1}(3,1) U_{2}(2,2) U_{3}(1,2) \\
&+\mathcal{G}(2,1,1) U_{1}(3,2) U_{2}(2,1) U_{3}(1,1)+\mathcal{G}(2,1,2) U_{1}(3,2) U_{2}(2,1) U_{3}(1,2) \\
&+\mathcal{G}(2,2,1) U_{1}(3,2) U_{2}(2,2) U_{3}(1,1)+\mathcal{G}(2,2,2) U_{1}(3,2) U_{2}(2,2) U_{3}(1,2) \\
&= 1 \cdot \frac{2}{3} \cdot 0 \cdot 0+7 \cdot \frac{2}{3} \cdot 0 \cdot \frac{4}{5}+4 \cdot \frac{2}{3} \cdot 1 \cdot 0+10 \cdot \frac{2}{3} \cdot 1 \cdot \frac{4}{5} \\
&+2 \cdot \frac{1}{3} \cdot 0 \cdot 0+8 \cdot \frac{1}{3} \cdot 0 \cdot \frac{4}{5}+5 \cdot \frac{1}{3} \cdot 1 \cdot 0+11 \cdot \frac{1}{3} \cdot 1 \cdot \frac{4}{5}=\frac{124}{15} .
\end{aligned}
$$

Table of Contents

(1) CP decomposition

- Computing CP with Alternating Least Squares
(2) Tucker decomposition
- Computing Tucker decomposition
(3) Tensor Train decomposition
- Computing Tensor Train decomposition
(4) Compact representations of tensor operations
(5) Miscellaneous
- Research topics/articles for the project
- Randomized SVD
- Strassen's algorithm: application of CP-decomposition

High Order SVD (HOSVD) for computing a Tucker decomposition

Algorithm 2 HOSVD method to compute a Tucker decomposition

Require: input tensor $\mathcal{A} \in \mathbb{R}^{n_{1} \times \cdots \times n_{d}}$, desired rank $\left(r_{1}, \cdots, r_{d}\right)$
Ensure: $\mathcal{A}=\mathcal{G} \times{ }_{1} U_{1} \times_{2} U_{2} \cdots \times_{d} U_{d}$
for $k=1$ to d do
$U_{k} \leftarrow r_{k}$ leading left singular vectors of $A_{(k)}$
end for
$\mathcal{G}=\mathcal{A} \times{ }_{1} U_{1}^{\top} \times_{2} U_{2}^{\top} \cdots \times_{d} U_{d}^{\top}$

- When $r_{i}<\operatorname{rank}\left(A_{(i)}\right)$ for one or more i, the decomposition is called the truncated-HOSVD (T-HOSVD)
- Output of T-HOSVD can be used as a starting point for an ALS algorithm
- The collective operation $\mathcal{A} \times 1 U_{1}^{\top} \times_{2} U_{2}^{\top} \cdots \times_{d} U_{d}^{\top}$ is known as Multiple Tensor-Times-Matrix (Multi-TTM) computation

Quasi-optimality of T-HOSVD

Let $\tilde{\mathcal{A}}=\mathcal{G} \times{ }_{1} U_{1} \times_{2} U_{2} \cdots \times_{d} U_{d}$ be the tensor obtained from T-HOSVD.

$$
\begin{aligned}
\|\mathcal{A}-\tilde{\mathcal{A}}\|_{F}^{2}= & \left\|\mathcal{A}-\mathcal{G} \times{ }_{1} U_{1} \times_{2} U_{2} \cdots \times_{d} U_{d}\right\|_{F}^{2}=\left\|\mathcal{A}-\mathcal{A} \times_{1} U_{1} U_{1}^{\top} \cdots \times_{d} U_{d} U_{d}^{\top}\right\|_{F}^{2} \\
= & \left\|\mathcal{A}-\mathcal{A} \times_{1} U_{1} U_{1}^{\top}+\mathcal{A} \times_{1} U_{1} U_{1}^{\top}-\mathcal{A} \times \times_{1} U_{1} U_{1}^{\top} \cdots \times_{d} U_{d} U_{d}^{\top}\right\|_{F}^{2} \\
= & \left\|\mathcal{A}-\mathcal{A} \times_{1} U_{1} U_{1}^{\top}\right\|_{F}^{2}+\left\|\mathcal{A} \times_{1} U_{1} U_{1}^{\top}-\mathcal{A} \times_{1} U_{1} U_{1}^{\top} \cdots \times_{d} U_{d} U_{d}^{\top}\right\|_{F}^{2} \\
= & \left\|\mathcal{A}-\mathcal{A} \times_{1} U_{1} U_{1}^{\top}\right\|_{F}^{2}+\left\|\mathcal{A} \times_{1} U_{1} U_{1}^{\top}-\mathcal{A} \times{ }_{1} U_{1} U_{1}^{\top} \times_{2} U_{2} U_{2}^{\top}\right\|_{F}^{2}+\cdots \\
& \cdots+\left\|\mathcal{A} \times_{1} U_{1} U_{1}^{\top} \cdots \times_{d-1} U_{d-1} U_{d-1}^{\top}-\mathcal{A} \times_{1} U_{1} U_{1}^{\top} \cdots \times_{d} U_{d} U_{d}^{\top}\right\|_{F}^{2} \\
\leq & \left\|\mathcal{A}-\mathcal{A} \times_{1} U_{1} U_{1}^{\top}\right\|_{F}^{2}+\left\|\mathcal{A}-\mathcal{A} \times_{2} U_{2} U_{2}^{\top}\right\|_{F}^{2}+\cdots+\left\|\mathcal{A}-\mathcal{A} \times_{d} U_{d} U_{d}^{\top}\right\|_{F}^{2}
\end{aligned}
$$

Theorem

Tensor $\tilde{\mathcal{A}}$ obtained from T-HOSVD satisfies quasi-optimality condition

$$
\|A-\tilde{\mathcal{A}}\|_{F} \leq \sqrt{d}\left\|\mathcal{A}-\mathcal{A}_{\text {best }}\right\|_{F}
$$

where $\mathcal{A}_{\text {best }}$ is the best approximation of \mathcal{A} with ranks $\left(r_{1}, \cdots, r_{d}\right)$.
Proof: $\left\|\mathcal{A}-\mathcal{A} \times_{i} U_{i} U_{i}^{\top}\right\|_{F} \leq\left\|\mathcal{A}-\mathcal{A}_{\text {best }}\right\|_{F}$ for $1 \leq i \leq d$. Substituting these in the previous result yields the specified inequality.

Sequentially T-HOSVD (ST-HOSVD) for Tucker decomposition

- This method is more work efficient than T-HOSVD
- In each step, it reduces the size of one dimension of the tensor

Algorithm 3 ST-HOSVD method to compute a Tucker decomposition
Require: input tensor $\mathcal{A} \in \mathbb{R}^{n_{1} \times \cdots \times n_{d}}$, desired rank $\left(r_{1}, \cdots, r_{d}\right)$
Ensure: $\llbracket \mathcal{G} ; U_{1}, \cdots, U_{d} \rrbracket:$ a $\left(r_{1}, \cdots, r_{d}\right)$-rank Tucker decomposition of \mathcal{A} $\mathcal{B} \leftarrow \mathcal{A}$
for $k=1$ to d do
$S \leftarrow B_{(k)} B_{(k)}^{T}$
$U_{k} \leftarrow r_{k}$ leading eigen vectors of S
$\mathcal{B} \leftarrow \mathcal{B} \times{ }_{k} U_{k}$
end for
$\mathcal{G}=\mathcal{B}$

Quasi-optimality of ST-HOSVD

Let $\tilde{\mathcal{A}}=\mathcal{G} \times{ }_{1} U_{1} \times_{2} U_{2} \cdots \times_{d} U_{d}$ be the tensor obtained from ST-HOSVD.

$$
\begin{aligned}
\|\mathcal{A}-\tilde{\mathcal{A}}\|_{F}^{2}= & \left\|\mathcal{A}-\mathcal{G} \times_{1} U_{1} \times_{2} U_{2} \cdots \times_{d} U_{d}\right\|_{F}^{2}=\left\|\mathcal{A}-\mathcal{A} \times_{1} U_{1} U_{1}^{\top} \cdots \times_{d} U_{d} U_{d}^{\top}\right\|_{F}^{2} \\
= & \left\|\mathcal{A}-\mathcal{A} \times_{1} U_{1} U_{1}^{\top}\right\|_{F}^{2}+\left\|\mathcal{A} \times_{1} U_{1} U_{1}^{\top}-\mathcal{A} \times_{1} U_{1} U_{1}^{\top} \times_{2} U_{2} U_{2}^{\top}\right\|_{F}+\cdots \\
& \cdots+\left\|\mathcal{A} \times_{1} U_{1} U_{1}^{\top} \cdots \times_{d-1} U_{d-1} U_{d-1}^{\top}-\mathcal{A} \times_{1} U_{1} U_{1}^{\top} \cdots \times_{d} U_{d} U_{d}^{\top}\right\|_{F}^{2}
\end{aligned}
$$

Theorem

Tensor $\tilde{\mathcal{A}}$ obtained from ST-HOSVD satisfies quasi-optimality condition

$$
\|A-\tilde{\mathcal{A}}\|_{F} \leq \sqrt{d}\left\|\mathcal{A}-\mathcal{A}_{\text {best }}\right\|_{F}
$$

where $\mathcal{A}_{\text {best }}$ is the best approximation of \mathcal{A} with ranks $\left(r_{1}, \cdots, r_{d}\right)$.
Proof: We know that $\left\|\mathcal{A}-\mathcal{A} \times_{i} U_{i} U_{i}^{\top}\right\|_{F} \leq\left\|\mathcal{A}-\mathcal{A}_{\text {best }}\right\|_{F}$ for $1 \leq i \leq d$.

$$
\begin{gathered}
\left\|\mathcal{A}-\mathcal{A} \times_{1} U_{1} U_{1}^{\top}\right\|_{F} \leq\left\|\mathcal{A}-\mathcal{A}_{\text {best }}\right\|_{F} \\
\left\|\mathcal{A} \times_{1} U_{1} U_{1}^{\top}-\mathcal{A} \times_{1} U_{1} U_{1}^{\top} \times_{2} U_{2} U_{2}^{\top}\right\|_{F} \leq\left\|\mathcal{A}-\mathcal{A} \times \times_{2} U_{2} U_{2}^{\top}\right\|_{F} \leq\left\|\mathcal{A}-\mathcal{A}_{\text {best }}\right\|_{F}
\end{gathered}
$$

$\left\|\mathcal{A} \times_{1} U_{1} U_{1}^{\top} \cdots \times_{d-1} U_{d-1} U_{d-1}^{\top}-\mathcal{A} \times_{1} U_{1} U_{1}^{\top} \cdots \dot{x}_{d} U_{d} U_{d}^{\top}\right\|_{F} \leq\left\|\mathcal{A}-\mathcal{A} \times_{d} U_{d} U_{d}^{\top}\right\|_{F} \leq\left\|\mathcal{A}-\mathcal{A}_{\text {best }}\right\|_{F}$ Summing the above terms yields the specified inequality.

Tucker decomposition optimization problem for a 3-dimensional tensor

For fixed ranks orthonormal matrices U_{1}, U_{2}, U_{3}, we want to solve
$\min _{U_{1}, U_{2}, U_{3}}\left\|\mathcal{A}-\mathcal{G} \times_{1} U_{1} \times_{2} U_{2} \times_{3} U_{3}\right\|_{F}$, where $\mathcal{G}=\mathcal{A} \times{ }_{1} U_{1}^{T} \times_{2} U_{2}^{T} \times_{3} U_{3}^{T}$.

This is equivalent to

$$
\max _{U_{1}, U_{2}, U_{3}}\left\|\mathcal{A} \times_{1} U_{1}^{T} \times_{2} U_{2}^{T} \times_{3} U_{3}^{T}\right\|_{F}
$$

It is a nonlinear, nonconvex optimization problem.

Higher-order orthogonal iteration (HOOI) method

Fixing all but one factor matrix, we have a matrix problem:

$$
\max _{\hat{U}_{1}}\left\|\mathcal{A} \times_{1} \hat{U}_{1}^{T} \times_{2} U_{2}^{T} \times_{3} U_{3}^{T}\right\|_{F}
$$

HOOI works by alternating over factor matrices, updating one by computing left singular vectors

HOOI method for computing a Tucker decomposition

Algorithm 4 HOOI method to compute Tucker decomposition
Require: input tensor $\mathcal{A} \in \mathbb{R}^{n_{1} \times \cdots \times n_{d}}$, desired ranks $\left(r_{1}, \cdots, r_{d}\right)$, initial factor matrices $U_{j} \in \mathbb{R}^{n_{j} \times r_{j}}$ for $1 \leq j \leq d$
Ensure: $\llbracket \mathcal{G} ; U_{1}, \cdots, U_{d} \rrbracket$: a $\left(r_{1}, \cdots, r_{d}\right)$-rank Tucker decomposition of \mathcal{A} repeat
for $i=1$ to d do
$\mathcal{B} \leftarrow \mathcal{A} \times_{1} U_{1}^{T} \cdots \times_{i-1} U_{i-1}^{T} \times_{i+1} U_{i+1}^{T} \cdots \times_{d} U_{d}^{T}$
$U_{i} \leftarrow r_{i}$ left singular vectors of $B_{(i)}$
end for
until converge or the maximum number of iterations
$\mathcal{G} \leftarrow \mathcal{A} \times{ }_{1} U_{1}^{T} \times_{2} U_{2}^{T} \cdots \times_{d} U_{d}^{T}$

- Outputs of HOSVD (U_{j} for $\left.1 \leq j \leq d\right)$ can be used as a starting point for this method

Table of Contents

(1) CP decomposition

(2) Tucker decomposition
(3) Tensor Train decomposition

4 Compact representations of tensor operations
(5) Miscellaneous

Tensor Train (TT) decomposition: Product of matrices view

- A d-dimensional tensor is represented with 2 matrices and d-2 3-dimensional tensors.

$$
\mathbf{A}\left(i_{1}, i_{2}, \cdots, i_{d}\right)=\mathbf{G}_{1}\left(i_{1}\right) \mathbf{G}_{2}\left(i_{2}\right) \cdots \mathbf{G}_{d}\left(i_{d}\right)
$$

An entry of $\mathcal{A} \in \mathbb{R}^{n_{1} \times \cdots \times n_{d}}$ is computed by multiplying corresponding matrix (or row/column) of each matrix/tensor.

Tensor Train decomposition

$\mathcal{A} \in \mathbb{R}^{n_{1} \times \cdots \times n_{d}}$ is represented with cores $\mathcal{G}_{k} \in \mathbb{R}^{r_{k-1} \times n_{k} \times r_{k}}, k=1,2, \cdots d$, $r_{0}=r_{d}=1$ and its elements satisfy the following expression:

$$
\begin{aligned}
\mathcal{A}\left(i_{1}, \cdots, i_{d}\right) & =\sum_{\alpha_{0}=1}^{r_{0}} \cdots \sum_{\alpha_{d}=1}^{r_{d}} \mathcal{G}_{1}\left(\alpha_{0}, i_{1}, \alpha_{1}\right) \cdots \mathcal{G}_{d}\left(\alpha_{d-1}, i_{d}, \alpha_{d}\right) \\
& =\sum_{\alpha_{1}=1}^{r_{1}} \cdots \sum_{\alpha_{d-1}=1}^{r_{d-1}} \mathcal{G}_{1}\left(1, i_{1}, \alpha_{1}\right) \cdots \mathcal{G}_{d}\left(\alpha_{d-1}, i_{d}, 1\right) \\
i_{1} \alpha_{1} & \alpha_{1}
\end{aligned}
$$

The ranks r_{k} are called TT-ranks.

- The number of entries in this decomposition $=$

$$
\mathcal{O}\left(n_{1} r_{1}+n_{2} r_{1} r_{2}+n_{3} r_{2} r_{3}+\cdots+n_{d-1} r_{d-2} r_{d-1}+n_{d} r_{d-1}\right)
$$

TT-decomposition: an example

Let $\mathcal{A} \in \mathbb{R}^{3 \times 4 \times 5} . \mathcal{G}_{1} \in \mathbb{R}^{3 \times 2}, \mathcal{G}_{2} \in \mathbb{R}^{2 \times 4 \times 2}$, and $\mathcal{G}_{3} \in \mathbb{R}^{2 \times 5}$ are the cores of a TT-decomposition.

$$
\mathcal{G}_{1}=\left(\begin{array}{ll}
1 & 1 \\
2 & 1 \\
3 & 1
\end{array}\right), \quad \mathcal{G}_{3}=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 1 & 1 & 1 & 1
\end{array}\right),
$$

$\mathcal{G}_{2}(:, 1,:)=\left(\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right), \mathcal{G}_{2}(:, 2,::)=\left(\begin{array}{ll}1 & 1 \\ 3 & 1\end{array}\right), \mathcal{G}_{2}(:, 3,:)=\left(\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right), \mathcal{G}_{2}(:, 4,:)=\left(\begin{array}{ll}1 & 1 \\ 5 & 1\end{array}\right)$

Computation of $\mathcal{A}(2,3,4)$,

$$
\begin{aligned}
\mathcal{A}(2,3,4) & =\mathcal{G}_{1}(2,:) \mathcal{G}_{2}(:, 3,:) \mathcal{G}_{3}(:, 4) \\
& =\left(\begin{array}{ll}
2 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{4}{1}=27
\end{aligned}
$$

Another representation of unfolding matrices of a tensor

A_{k} denotes k-th unfolding matrix of tensor $\mathcal{A} \in \mathbb{R}^{n_{1} \times \cdots \times n_{d}}$.

$$
A_{k}=\left[A_{k}\left(i_{1}, i_{2}, \cdots, i_{k} ; i_{k+1}, \cdots, i_{d}\right)\right]
$$

- Size of A_{k} is $\left(\prod_{\ell=1}^{k} n_{\ell}\right) \times\left(\prod_{\ell=k+1}^{d} n_{\ell}\right)$

Table of Contents

(1) CP decomposition

- Computing CP with Alternating Least Squares
(2) Tucker decomposition
- Computing Tucker decomposition
(3) Tensor Train decomposition
- Computing Tensor Train decomposition

4 Compact representations of tensor operations
(5) Miscellaneous

- Research topics/articles for the project
- Randomized SVD
- Strassen's algorithm: application of CP-decomposition

TT-SVD algorithm for TT approximation [Oseledets, 2011]

Algorithm 5 TT-SVD algorithm

Require: d-dimensional tensor $\mathcal{A} \in \mathbb{R}^{n_{1} \times \cdots \times n_{d}}$ and desired ranks ($r_{0}=1$,

$$
\left.r_{1}, r_{2}, \cdots r_{d-1}, r_{d}=1\right)
$$

Ensure: Cores $\mathcal{G}_{k} \in \mathbb{R}^{r_{k-1} \times n_{k} \times r_{k}}$ for $1 \leq k \leq d$ of a TT representation
1: Temporary tensor: $\mathcal{C}=\mathcal{A}$
2: for $k=1: d-1$ do
3: $\quad A_{k}=\operatorname{reshape}\left(\mathcal{C}, r_{k-1} n_{k}, \frac{\text { numel }(\mathcal{C})}{r_{k-1} n_{k}}\right)$
4: \quad Compute SVD: $A_{k}=U \Sigma V^{T}$
5: \quad New core: $\mathcal{G}_{k}:=\operatorname{reshape}\left(U\left(; 1: r_{k}\right), r_{k-1}, n_{k}, r_{k}\right)$
6: $\quad \mathcal{C}=\Sigma\left(1: r_{k} ; 1: r_{k}\right) V^{T}\left(1: r_{k} ;\right)$
7: end for
8: $\mathcal{G}_{d}=\mathcal{C}$
9: return $\mathcal{G}_{1}, \cdots, \mathcal{G}_{d}$

- reshape $\left(A, m_{1}, \cdots, m_{\ell}\right)$: rearranges array A into a $m_{1} \times \cdots \times m_{\ell}$ array
- numel (A) : number of elements of array A

Error with TT-SVD approximation

Suppose the unfolding matrices of \mathcal{A} satisfy the following:
$A_{k}=R_{k}+E_{k}, \quad R_{k}$ is the best r_{k} - rank approximation of A_{k}, \quad for $1 \leq k \leq d-1$. The accuracy analysis of TT-SVD is similar to that of ST-HOSVD method (see [Oseledets, 2011]).
Tensor \mathcal{B} obtained from the TT-SVD algorithm satisfies

$$
\|\mathcal{A}-\mathcal{B}\|_{F}^{2} \leq \sum_{k=1}^{d-1}\left\|E_{k}\right\|_{F}^{2}
$$

Theorem

Tensor \mathcal{B} obtained from TT-SVD satisfies quasi-optimality condition

$$
\|A-\mathcal{B}\|_{F} \leq \sqrt{d-1}\left\|\mathcal{A}-\mathcal{A}_{\text {best }}\right\|_{F}
$$

where $\mathcal{A}_{\text {best }}$ is the best $\left(r_{1}, \cdots, r_{d-1}\right)$-ranks approximation of \mathcal{A} in TT-format.
Proof: As SVD gives the best r_{k} rank approximation for A_{k}, we have

$$
\left\|E_{k}\right\|_{F} \leq\left\|\mathcal{A}-\mathcal{A}_{\text {best }}\right\|_{F} \text { for } 1 \leq k \leq d .
$$

Putting the values of $\left\|E_{k}\right\|_{F}$ in the error expression of TT-SVD algorithm completes the proof.

Why TT representation is good for high dimension tensors?

This representation allows one to perform various basic linear algebra operations in its own structure.

- Addition: The addition of two tensors in the TT-representation,

$$
\mathcal{A}=\mathcal{A}_{1}\left(i_{1}\right) \cdots \mathcal{A}_{d}\left(i_{d}\right), \quad \mathcal{B}=\mathcal{B}_{1}\left(i_{1}\right) \cdots \mathcal{B}_{d}\left(i_{d}\right)
$$

requires to merge cores for each mode. Auxiliary dimensions are added. The cores $\mathcal{C}_{k}\left(i_{k}\right)$ of $\mathcal{C}=\mathcal{A}+\mathcal{B}$ are defined as

$$
\begin{array}{cc}
\mathcal{C}_{k}\left(i_{k}\right)=\left(\begin{array}{cc}
\mathcal{A}_{k}\left(i_{k}\right) & 0 \\
0 & \mathcal{B}_{k}\left(i_{k}\right)
\end{array}\right), & \text { for } 2 \leq k \leq d-1, \text { and } \\
\mathcal{C}_{1}\left(i_{1}\right)=\left(\begin{array}{ll}
\mathcal{A}_{1}\left(i_{1}\right) & \left.\mathcal{B}_{1}\left(i_{1}\right)\right),
\end{array} \quad \mathcal{C}_{d}\left(i_{d}\right)=\binom{\mathcal{A}_{d}\left(i_{d}\right)}{\mathcal{B}_{d}\left(i_{d}\right)} .\right.
\end{array}
$$

- Multiplication by a number: requires to scale one of the cores
- Multidimensional contraction, Hadamard product and scalar product can also be performed
- Further approximation (or compression) can also be obtained

Table of Contents

(1) CP decomposition

(2) Tucker decomposition
(3) Tensor Train decomposition

4 Compact representations of tensor operations
(5) Miscellaneous

Tensor network representations

Notation: Tensors are denoted by solid shapes and number of lines denote the dimensions of the tensors. Connecting two lines implies summation (or contraction) over the connected dimensions.

Vector:
Matrix :

3-dimensional tensor :

Tucker decomposition of a 3-dimensional tensor :

TT decomposition of of a 4-dimensional tensor

Table of Contents

(1) CP decomposition

- Computing CP with Alternating Least Squares
(2) Tucker decomposition
- Computing Tucker decomposition
(3) Tensor Train decomposition
- Computing Tensor Train decomposition

4 Compact representations of tensor operations
(5) Miscellaneous

- Research topics/articles for the project
- Randomized SVD
- Strassen's algorithm: application of CP-decomposition

Course project

- A list of topics/articles is given
- Each student or a group of two students will prepare a 5-6 pages report for the chosen topic/article
- Deadline for submitting the report: Nov 6
- Presentation would be after Nov 6
- Email me your or your group topic/article choices (atleast two) in preference order

If you want to propose another topic or article, your are more than welcome to discuss it with me.

Research topics

- Communication costs of a specific matrix factorization
- Use of tensors in a particular domain
- Neuroscience, data analysis, molecular simulations, quantum computing, face recognition

What do I expect from you in the report?

- State-of-the-art of the field
- Bottleneck part of the operation
- Your idea of improvement and preliminary work on why it will be effective

Research articles

- Obtain lower bounds on data transfers for various computations on a sequential machine: Automated Derivation of Parametric Data Movement Lower Bounds for Affine Programs
- Performance optimizations for TSQR algorithm: Reconstructing Householder Vectors from Tall-Skinny QR
- Memory management in deep neural network training: Optimal GPU-CPU Offloading Strategies for Deep Neural Network Training
- Sequential lower bounds and optimal algorithms for symmetric computations: I/O-Optimal Algorithms for Symmetric Linear Algebra Kernels
- Hypergraph partitioning-based methods to improve MTTKRP performance: Scalable Sparse Tensor Decompositions in Distributed Memory Systems
- A parallel method to perform MTTKRP on a parallel shared memory machine: SPLATT: Efficient and Parallel Sparse Tensor-Matrix Multiplication
- Randomization based parallel HOSVD and ST-HOSVD methods: Parallel Randomized Tucker Decomposition Algorithms
- Tucker decomposition to improve performance of convolution kernels: Stable Low-rank Tensor Decomposition for Compression of Convolutional Neural Network
- Tensor train representation for the weight matrices of the fully connected layers: Tensorizing Neural Networks

Contents of the report for a research article

- The general idea of the work
- A detailed analysis of some parts
- Overview of the state of the art
- Mention why the work of this paper is important
- Your feedback on the work (possible extensions, limitations of the work, ...)
- What challenges you faced while reading the paper (which parts are not clear, explanation is not appropriate, missing information, ...)

Each group (or person) will do a presentation of the selected topic/article for 30-45 minutes, followed by 5-10 minutes of questions/comments.

Table of Contents

(1) CP decomposition

- Computing CP with Alternating Least Squares
(2) Tucker decomposition
- Computing Tucker decomposition
(3) Tensor Train decomposition
- Computing Tensor Train decomposition

4 Compact representations of tensor operations
(5) Miscellaneous

- Research topics/articles for the project
- Randomized SVD
- Strassen's algorithm: application of CP-decomposition

Main idea of randomized SVD

We want to find r-rank approximation of $A \in \mathbb{R}^{m \times n}$. We select a matrix Q with ℓ ($r \leq \ell \leq n$) orthonormal columns that well approximates the action of A, $A \approx Q Q^{T} A$.
(1) Construct $B=Q^{T} A$
(2) Perform SVD of $B, B=\tilde{U} \Sigma V^{T}$
(3) Set $U=Q \tilde{U}$
(c) Return U, Σ, V

A simple way to find Q

(1) Construct a Gaussian random matrix Ω of $n \times \ell$ size
(2) Form $X=A \Omega$
(3) Obtain an orthonormal matrix using QR factorization, $X=Q R$ Usually $\ell-r$ is a small constant, such as 5 or 10 .

Table of Contents

(1) CP decomposition

- Computing CP with Alternating Least Squares
(2) Tucker decomposition
- Computing Tucker decomposition
(3) Tensor Train decomposition
- Computing Tensor Train decomposition

4 Compact representations of tensor operations
(5) Miscellaneous

- Research topics/articles for the project
- Randomized SVD
- Strassen's algorithm: application of CP-decomposition

Strassen's algorithm for matrix multiplication ($C=A B$)

- Matrix is divided into 2×2 blocks

$$
\left(\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right)=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right)
$$

$$
\begin{array}{ll}
M_{1}=\left(A_{11}+A_{22}\right)\left(B_{11}+B_{22}\right) & \\
M_{2}=\left(A_{21}+A_{22}\right) B_{11} & C_{11}=M_{1}+M_{4}-M_{5}+M_{7} \\
M_{3}=A_{11}\left(B_{12}-B_{22}\right) & C_{12}=M_{3}+M_{5} \\
M_{4}=A_{22}\left(B_{21}-B_{11}\right) & C_{21}=M_{2}+M_{4} \\
M_{5}=\left(A_{11}+A_{12}\right) B_{22} & C_{22}=M_{1}-M_{2}+M_{3}+M_{6} \\
M_{6}=\left(A_{21}-A_{11}\right)\left(B_{11}+B_{12}\right) & \\
M_{7}=\left(A_{12}-A_{22}\right)\left(B_{21}+B_{22}\right) &
\end{array}
$$

2×2 Matrix multiplication as a tensor operation

$$
\left(\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right)=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right)
$$

We can write this multiplication as a tensor operation,

$$
\mathcal{T} \times_{1}\left(\begin{array}{l}
A_{11} \\
A_{12} \\
A_{21} \\
A_{22}
\end{array}\right) \times\left(\begin{array}{l}
B_{11} \\
B_{12} \\
B_{21} \\
B_{22}
\end{array}\right)=\left(\begin{array}{l}
C_{11} \\
C_{12} \\
C_{21} \\
C_{22}
\end{array}\right)
$$

Where \mathcal{T} is a $4 \times 4 \times 4$ tensor with the following frontal slices:
$T_{1}=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right) T_{2}=\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right) \quad T_{3}=\left(\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right) T_{4}=\left(\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$

2×2 Matrix multiplication as a tensor operation

$$
\left(\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right)=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right)
$$

We can write this multiplication as a tensor operation,

$$
\mathcal{T} \times_{1}\left(\begin{array}{l}
A_{11} \\
A_{12} \\
A_{21} \\
A_{22}
\end{array}\right) \times\left(\begin{array}{l}
B_{11} \\
B_{12} \\
B_{21} \\
B_{22}
\end{array}\right)=\left(\begin{array}{l}
C_{11} \\
C_{12} \\
C_{21} \\
C_{22}
\end{array}\right)
$$

For example,

$$
T_{2} \times\left(\begin{array}{l}
A_{11} \\
A_{12} \\
A_{21} \\
A_{22}
\end{array}\right) \times\left(\begin{array}{l}
B_{11} \\
B_{12} \\
B_{21} \\
B_{22}
\end{array}\right)=\left(\begin{array}{llll}
A_{11} & A_{12} & A_{21} & A_{22}
\end{array}\right)\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
B_{11} \\
B_{12} \\
B_{21} \\
B_{22}
\end{array}\right)=A_{11} B_{12}+A_{12} B_{22}=C_{12}
$$

Matrix multiplication with CP decomposition

CP decomposition of $\mathcal{T}, \mathfrak{T}=\llbracket U, V, W \rrbracket$ can be written as,

$$
\mathcal{T}=\sum_{r=1}^{R} u_{r} \circ v_{r} \circ w_{r}
$$

Here u_{r}, v_{r} and w_{r} are the columns of U, V and W, respectively. R is the rank of \mathfrak{T}. We can write matrix multiplication as,

$$
\left.\begin{array}{rl}
\mathcal{T} \times \times_{1}\left(\begin{array}{l}
A_{11} \\
A_{12} \\
A_{21} \\
A_{22}
\end{array}\right) \times\left(\begin{array}{l}
B_{11} \\
B_{12} \\
B_{21} \\
B_{22}
\end{array}\right) & =\sum_{r=1}^{R}\left(\begin{array}{llll}
u_{r} & v_{r} \circ w_{r}
\end{array}\right) \times\left(\begin{array}{l}
A_{11} \\
A_{12} \\
A_{21} \\
A_{22}
\end{array}\right) \times\left(\begin{array}{l}
B_{11} \\
B_{12} \\
B_{21} \\
B_{22}
\end{array}\right) \\
& =\sum_{r=1}^{R}\left[\begin{array}{lllll}
\left(A_{11}\right. & A_{12} & A_{21} & A_{22}
\end{array}\right) u_{r}\left(\begin{array}{llll}
B_{11} & B_{12} & B_{21} & B_{22}
\end{array}\right) v_{r}
\end{array}\right] w_{r}=\left(\begin{array}{l}
C_{11} \\
C_{12} \\
C_{21} \\
C_{22}
\end{array}\right) .
$$

Factor matrices and Strassen's algorithm

Strassen's algorithm,
Factor matrices,

$$
\begin{aligned}
& U=\left(\begin{array}{ccccccc}
1 & 0 & 1 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & -1
\end{array}\right) \\
& \left(\begin{array}{ccccccc}
1 & 1 & 0 & -1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0
\end{array}\right) \quad M_{5}=\left(A_{11}+A_{12}\right) B_{22} \\
& \begin{array}{l}
M_{1}=\left(A_{11}+A_{22}\right)\left(B_{11}+B_{22}\right) \\
M_{2}=\left(A_{21}+A_{22}\right) B_{11} \\
M_{3}=A_{11}\left(B_{12}-B_{22}\right) \\
M_{4}=A_{22}\left(B_{21}-B_{11}\right) \\
M_{5}=\left(A_{11}+A_{12}\right) B_{22} \\
M_{6}=\left(A_{21}-A_{11}\right)\left(B_{11}+B_{12}\right) \\
M_{7}=\left(A_{12}-A_{22}\right)\left(B_{21}+B_{22}\right) \\
C_{11}=M_{1}+M_{4}-M_{5}+M_{7} \\
C_{12}=M_{3}+M_{5} \\
C_{21}=M_{2}+M_{4} \\
C_{22}=M_{1}-M_{2}+M_{3}+M_{6}
\end{array} \\
& \begin{array}{l}
M_{1}=\left(A_{11}+A_{22}\right)\left(B_{11}+B_{22}\right) \\
M_{2}=\left(A_{21}+A_{22}\right) B_{11} \\
M_{3}=A_{11}\left(B_{12}-B_{22}\right) \\
M_{4}=A_{22}\left(B_{21}-B_{11}\right) \\
M_{5}=\left(A_{11}+A_{12}\right) B_{22} \\
M_{6}=\left(A_{21}-A_{11}\right)\left(B_{11}+B_{12}\right) \\
M_{7}=\left(A_{12}-A_{22}\right)\left(B_{21}+B_{22}\right) \\
C_{11}=M_{1}+M_{4}-M_{5}+M_{7} \\
C_{12}=M_{3}+M_{5} \\
C_{21}=M_{2}+M_{4} \\
C_{22}=M_{1}-M_{2}+M_{3}+M_{6}
\end{array} \\
& W=\left(\begin{array}{ccccccc}
1 & 0 & 0 & 1 & -1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & -1 & 1 & 0 & 0 & 1 & 0
\end{array}\right) \\
& M_{1}=\left(A_{11}+A_{22}\right)\left(B_{11}+B_{22}\right) \\
& M_{2}=\left(A_{21}+A_{22}\right) B_{11} \\
& M_{3}=A_{11}\left(B_{12}-B_{22}\right) \\
& M_{4}=A_{22}\left(B_{21}-B_{11}\right) \\
& V=\left(\begin{array}{lllllll}
0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right) \\
& \left(\begin{array}{ccccccc}
0 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 0 & -1 & 0 & 1 & 0 & 1
\end{array}\right) \\
& C_{11}=M_{1}+M_{4}-M_{5}+M_{7} \\
& C_{12}=M_{3}+M_{5} \\
& C_{21}=M_{2}+M_{4} \\
& C_{22}=M_{1}-M_{2}+M_{3}+M_{6}
\end{aligned}
$$

Factor matrices U, V and W construct the algorithm.

