
Memory-Aware DAG Scheduling

Loris Marchal
(CNRS & ENS Lyon)

November 5, 2023

Memory-Aware DAG Scheduling

Task Graph Scheduling vs. Limited Memory

Reducing Memory Footprint of Task Graphs

Reducing Memory Footprint of SP-Graphs

Shared Memory of Parallel Processing
Complexity and Space-Time Tradeoffs for Trees
Processing DAGs with Limited Memory

3 / 41

Memory-Aware DAG Scheduling

Task Graph Scheduling vs. Limited Memory

Reducing Memory Footprint of Task Graphs

Reducing Memory Footprint of SP-Graphs

Shared Memory of Parallel Processing
Complexity and Space-Time Tradeoffs for Trees
Processing DAGs with Limited Memory

4 / 41

Taming HPC platforms with runtime systems
▶ Write your application as function calls (tasks),

▶ Specify data input/output (dependencies)

▶ Provide function codes for specific cores/GPUs

▶ Let the system do the scheduling at runtime!

11 / 11

Taming HPC platforms with runtime systems

I Write you application as function calls (tasks),
I Specify data input/output (dependencies)
I Provide function codes for specific cores/GPUs
I Let the system do the scheduling at runtime!

SYRK_3_2

POTRF_3

SYRK_3_0

SYRK_3_1

SYRK_2_0

SYRK_2_1

POTRF_2

GEMM_2_1_0

TRSM_2_1

GEMM_3_2_1

GEMM_3_1_0

TRSM_3_1

GEMM_3_2_0

TRSM_3_2

POTRF_1

TRSM_1_0

SYRK_1_0TRSM_3_0 TRSM_2_0

POTRF_0

Cholesky_decomposition(A):
for(k=0; k<N; k++)

A[k][k]=POTRF(A[k][k])
for(m=k+1; m<N; m++)

A[m][k]=TRSM(A[k][k], A[m][k])
for(n=k+1; n<N; n++)

A[n][n]=SYRK(A[n][k], A[n][n])
for(m=n+1; m<N; m++)

A[m][n]+=GEMM(A[m][k],A[n][k])

Graph of tasks: Directed Acyclic Graph (DAG)
I Tasks linked with data dependency
I Wide literature on DAG scheduling
I What about memory and data movements (I/Os) ?

SYRK_3_2

POTRF_3

SYRK_3_0

SYRK_3_1

SYRK_2_0

SYRK_2_1

POTRF_2

GEMM_2_1_0

TRSM_2_1

GEMM_3_2_1

GEMM_3_1_0

TRSM_3_1

GEMM_3_2_0

TRSM_3_2

POTRF_1

TRSM_1_0

SYRK_1_0TRSM_3_0 TRSM_2_0

POTRF_0

Graph of tasks: Directed Acyclic Graph (DAG)

▶ Tasks linked with data dependency

▶ Wide literature on DAG scheduling

▶ What about memory and data movements (I/Os) ?

4 / 41

Taming HPC platforms with runtime systems
▶ Write your application as function calls (tasks),

▶ Specify data input/output (dependencies)

▶ Provide function codes for specific cores/GPUs

▶ Let the system do the scheduling at runtime!

11 / 11

Taming HPC platforms with runtime systems

I Write you application as function calls (tasks),
I Specify data input/output (dependencies)
I Provide function codes for specific cores/GPUs
I Let the system do the scheduling at runtime!

SYRK_3_2

POTRF_3

SYRK_3_0

SYRK_3_1

SYRK_2_0

SYRK_2_1

POTRF_2

GEMM_2_1_0

TRSM_2_1

GEMM_3_2_1

GEMM_3_1_0

TRSM_3_1

GEMM_3_2_0

TRSM_3_2

POTRF_1

TRSM_1_0

SYRK_1_0TRSM_3_0 TRSM_2_0

POTRF_0

Cholesky_decomposition(A):
for(k=0; k<N; k++)

A[k][k]=POTRF(A[k][k])
for(m=k+1; m<N; m++)

A[m][k]=TRSM(A[k][k], A[m][k])
for(n=k+1; n<N; n++)

A[n][n]=SYRK(A[n][k], A[n][n])
for(m=n+1; m<N; m++)

A[m][n]+=GEMM(A[m][k],A[n][k])

Graph of tasks: Directed Acyclic Graph (DAG)
I Tasks linked with data dependency
I Wide literature on DAG scheduling
I What about memory and data movements (I/Os) ?

SYRK_3_2

POTRF_3

SYRK_3_0

SYRK_3_1

SYRK_2_0

SYRK_2_1

POTRF_2

GEMM_2_1_0

TRSM_2_1

GEMM_3_2_1

GEMM_3_1_0

TRSM_3_1

GEMM_3_2_0

TRSM_3_2

POTRF_1

TRSM_1_0

SYRK_1_0TRSM_3_0 TRSM_2_0

POTRF_0

Graph of tasks: Directed Acyclic Graph (DAG)

▶ Tasks linked with data dependency

▶ Wide literature on DAG scheduling

▶ What about memory and data movements (I/Os) ?

5 / 41

Task graph scheduling and memory

▶ Consider a simple task graph

▶ Tasks have durations and memory demands

A

B

C

D

E

F

▶ Peak memory: maximum memory usage

▶ Trade-off between peak memory and makespan

5 / 41

Task graph scheduling and memory

▶ Consider a simple task graph

▶ Tasks have durations and memory demands

A

B

C

D

E

F

duration

m
em

or
y

▶ Peak memory: maximum memory usage

▶ Trade-off between peak memory and makespan

5 / 41

Task graph scheduling and memory

▶ Consider a simple task graph

▶ Tasks have durations and memory demands

A B

C

D

E F

time

Processor 1:

Processor 2:

▶ Peak memory: maximum memory usage

▶ Trade-off between peak memory and makespan

5 / 41

Task graph scheduling and memory

▶ Consider a simple task graph

▶ Tasks have durations and memory demands

out of memory!

A B

C

D

E F

time

Processor 1:

Processor 2:

▶ Peak memory: maximum memory usage

▶ Trade-off between peak memory and makespan

5 / 41

Task graph scheduling and memory

▶ Consider a simple task graph

▶ Tasks have durations and memory demands

A B

C

D

E F

time

Processor 1:

Processor 2:

▶ Peak memory: maximum memory usage

▶ Trade-off between peak memory and makespan

6 / 41

Going back to sequential processing

▶ Temporary data require memory

▶ Scheduling influences the peak memory

A

B

C

D

E

F

6 / 41

Going back to sequential processing

▶ Temporary data require memory

▶ Scheduling influences the peak memory

A B C D E F

6 / 41

Going back to sequential processing

▶ Temporary data require memory

▶ Scheduling influences the peak memory

A B C D E F

A BC D E F

7 / 41

Pebble game for register allocation (reminder)

▶ From the 70s: limit usage of scarce registers

▶ Model expressions as Directed Acyclic Graphs
y

−

5 1z x

×

+

(5− z)× (1 + x + y)
Rules of the game:

▶ A pebble may be placed on a source node at any time (LOAD)

▶ If all predecessors of v are pebbled, a pebble may be placed on v .
(COMPUTE)

▶ A pebble may be removed from a vertex at any time. (EVICT)

▶ Goal: computation all vertices, use minimal number of pebbles

Results: Optimal algorithms for trees — NP-hard on general DAGs

7 / 41

Pebble game for register allocation (reminder)

▶ From the 70s: limit usage of scarce registers

▶ Model expressions as Directed Acyclic Graphs

+−

5 1z x

×

y

(5− z)× (1 + x + y)
Rules of the game:

▶ A pebble may be placed on a source node at any time (LOAD)

▶ If all predecessors of v are pebbled, a pebble may be placed on v .
(COMPUTE)

▶ A pebble may be removed from a vertex at any time. (EVICT)

▶ Goal: computation all vertices, use minimal number of pebbles

Results: Optimal algorithms for trees — NP-hard on general DAGs

7 / 41

Pebble game for register allocation (reminder)

▶ From the 70s: limit usage of scarce registers

▶ Model expressions as Directed Acyclic Graphs

−

5 1z x

×

y

+

(5− z)× (1 + x + y)
Rules of the game:

▶ A pebble may be placed on a source node at any time (LOAD)

▶ If all predecessors of v are pebbled, a pebble may be placed on v .
(COMPUTE)

▶ A pebble may be removed from a vertex at any time. (EVICT)

▶ Goal: computation all vertices, use minimal number of pebbles

Results: Optimal algorithms for trees — NP-hard on general DAGs

7 / 41

Pebble game for register allocation (reminder)

▶ From the 70s: limit usage of scarce registers

▶ Model expressions as Directed Acyclic Graphs
5 1z x

×

y

+−

(5− z)× (1 + x + y)
Rules of the game:

▶ A pebble may be placed on a source node at any time (LOAD)

▶ If all predecessors of v are pebbled, a pebble may be placed on v .
(COMPUTE)

▶ A pebble may be removed from a vertex at any time. (EVICT)

▶ Goal: computation all vertices, use minimal number of pebbles

Results: Optimal algorithms for trees — NP-hard on general DAGs

7 / 41

Pebble game for register allocation (reminder)

▶ From the 70s: limit usage of scarce registers

▶ Model expressions as Directed Acyclic Graphs

+−

5 1z x

×

y

(5− z)× (1 + x + y)
Rules of the game:

▶ A pebble may be placed on a source node at any time (LOAD)

▶ If all predecessors of v are pebbled, a pebble may be placed on v .
(COMPUTE)

▶ A pebble may be removed from a vertex at any time. (EVICT)

▶ Goal: computation all vertices, use minimal number of pebbles

Results: Optimal algorithms for trees — NP-hard on general DAGs

7 / 41

Pebble game for register allocation (reminder)

▶ From the 70s: limit usage of scarce registers

▶ Model expressions as Directed Acyclic Graphs

+−

5 1z x

×

y

(5− z)× (1 + x + y)
Rules of the game:

▶ A pebble may be placed on a source node at any time (LOAD)

▶ If all predecessors of v are pebbled, a pebble may be placed on v .
(COMPUTE)

▶ A pebble may be removed from a vertex at any time. (EVICT)

▶ Goal: computation all vertices, use minimal number of pebbles

Results: Optimal algorithms for trees — NP-hard on general DAGs

7 / 41

Pebble game for register allocation (reminder)

▶ From the 70s: limit usage of scarce registers

▶ Model expressions as Directed Acyclic Graphs

+−

5 1z x

×

y

(5− z)× (1 + x + y)
Rules of the game:

▶ A pebble may be placed on a source node at any time (LOAD)

▶ If all predecessors of v are pebbled, a pebble may be placed on v .
(COMPUTE)

▶ A pebble may be removed from a vertex at any time. (EVICT)

▶ Goal: computation all vertices, use minimal number of pebbles

Results: Optimal algorithms for trees — NP-hard on general DAGs

8 / 41

Memory-Aware DAG Scheduling

Task Graph Scheduling vs. Limited Memory

Reducing Memory Footprint of Task Graphs

Reducing Memory Footprint of SP-Graphs

Shared Memory of Parallel Processing
Complexity and Space-Time Tradeoffs for Trees
Processing DAGs with Limited Memory

9 / 41

Generalized Pebble Game

▶ Sparse matrix factorization

▶ Task graph: tree (with dependencies
towards the root)

▶ Large temporary data

Generalized pebble game [Liu 1986]:

▶ Node have heterogeneous weights (memory
demand)

▶ Compute task = replace inputs by outputs in
memory

▶ output memory ̸=
∑

input memory

M
em

or
y

13

12 1527 3

45

8

32

9 / 41

Generalized Pebble Game

▶ Sparse matrix factorization

▶ Task graph: tree (with dependencies
towards the root)

▶ Large temporary data

Generalized pebble game [Liu 1986]:

▶ Node have heterogeneous weights (memory
demand)

▶ Compute task = replace inputs by outputs in
memory

▶ output memory ̸=
∑

input memory
12

M
em

or
y

12 1527 3

45

8

32 13

9 / 41

Generalized Pebble Game

▶ Sparse matrix factorization

▶ Task graph: tree (with dependencies
towards the root)

▶ Large temporary data

Generalized pebble game [Liu 1986]:

▶ Node have heterogeneous weights (memory
demand)

▶ Compute task = replace inputs by outputs in
memory

▶ output memory ̸=
∑

input memory

27

12

M
em

or
y

3 8

1332

12 1527

45

9 / 41

Generalized Pebble Game

▶ Sparse matrix factorization

▶ Task graph: tree (with dependencies
towards the root)

▶ Large temporary data

Generalized pebble game [Liu 1986]:

▶ Node have heterogeneous weights (memory
demand)

▶ Compute task = replace inputs by outputs in
memory

▶ output memory ̸=
∑

input memory

32

M
em

or
y

12 1527 3

45

8

32 13

9 / 41

Generalized Pebble Game

▶ Sparse matrix factorization

▶ Task graph: tree (with dependencies
towards the root)

▶ Large temporary data

Generalized pebble game [Liu 1986]:

▶ Node have heterogeneous weights (memory
demand)

▶ Compute task = replace inputs by outputs in
memory

▶ output memory ̸=
∑

input memory

15

32

M
em

or
y

3 8

1332

12 1527

45

10 / 41

Liu’s Best Post-Order Traversal for Trees

Post-Order: entirely process one subtree after the other (DFS)

fnf2

r

P1
P2 . . . Pn

f1

▶ For each subtree Ti : peak memory Pi , residual memory fi
▶ For a given processing order 1, . . . , n, the peak memory is:

max{P1, f1 + P2, f1 + f2 + P3, . . . ,
∑
i<n

fi + Pn,
∑

fi + nr + fr}

▶ Optimal order:

10 / 41

Liu’s Best Post-Order Traversal for Trees

Post-Order: entirely process one subtree after the other (DFS)

fnf2

r

P1
P2 . . . Pn

f1

▶ For each subtree Ti : peak memory Pi , residual memory fi
▶ For a given processing order 1, . . . , n, the peak memory is:

max{P1, f1 + P2, f1 + f2 + P3, . . . ,
∑
i<n

fi + Pn,
∑

fi + nr + fr}

▶ Optimal order:

10 / 41

Liu’s Best Post-Order Traversal for Trees

Post-Order: entirely process one subtree after the other (DFS)

fnf2

r

P1
P2 . . . Pn

f1

▶ For each subtree Ti : peak memory Pi , residual memory fi
▶ For a given processing order 1, . . . , n, the peak memory is:

max{P1, f1 + P2, f1 + f2 + P3, . . . ,
∑
i<n

fi + Pn,
∑

fi + nr + fr}

▶ Optimal order:

10 / 41

Liu’s Best Post-Order Traversal for Trees

Post-Order: entirely process one subtree after the other (DFS)

fnf2

r

P1
P2 . . . Pn

f1

▶ For each subtree Ti : peak memory Pi , residual memory fi
▶ For a given processing order 1, . . . , n, the peak memory is:

max{P1, f1 + P2, f1 + f2 + P3, . . . ,
∑
i<n

fi + Pn,
∑

fi + nr + fr}

▶ Optimal order:

10 / 41

Liu’s Best Post-Order Traversal for Trees

Post-Order: entirely process one subtree after the other (DFS)

fnf2

r

P1
P2 . . . Pn

f1

▶ For each subtree Ti : peak memory Pi , residual memory fi
▶ For a given processing order 1, . . . , n, the peak memory is:

max{P1, f1 + P2, f1 + f2 + P3, . . . ,
∑
i<n

fi + Pn,
∑

fi + nr + fr}

▶ Optimal order:

10 / 41

Liu’s Best Post-Order Traversal for Trees

Post-Order: entirely process one subtree after the other (DFS)

fnf2

r

P1
P2 . . . Pn

f1

▶ For each subtree Ti : peak memory Pi , residual memory fi
▶ For a given processing order 1, . . . , n, the peak memory is:

max{P1, f1 + P2, f1 + f2 + P3, . . . ,
∑
i<n

fi + Pn,
∑

fi + nr + fr}

▶ Optimal order: ?

10 / 41

Liu’s Best Post-Order Traversal for Trees

Post-Order: entirely process one subtree after the other (DFS)

fnf2

r

P1
P2 . . . Pn

f1

▶ For each subtree Ti : peak memory Pi , residual memory fi
▶ For a given processing order 1, . . . , n, the peak memory is:

max{P1, f1 + P2, f1 + f2 + P3, . . . ,
∑
i<n

fi + Pn,
∑

fi + nr + fr}

▶ Optimal order: non-increasing Pi − fi

11 / 41

Proof for best post-order

Theorem (Best Post-Order).

The best post-order traversal is obtain by processing subtrees in
non-increasing order Pi − fi .

Proof:
▶ Consider an optimal traversal which does not respect the order:

▶ subtree j is processed right before subtree k
▶ Pk − fk ≥ Pj − fj

peak when j , then k peak when k, then j
during first subtree mem before + Pj mem before + Pk

during second subtree mem before + fj + Pk mem before + fk + Pj

▶ fk + Pj ≤ fj + Pk

▶ Transform the schedule step by step without increasing the memory.

11 / 41

Proof for best post-order

Theorem (Best Post-Order).

The best post-order traversal is obtain by processing subtrees in
non-increasing order Pi − fi .

Proof:
▶ Consider an optimal traversal which does not respect the order:

▶ subtree j is processed right before subtree k
▶ Pk − fk ≥ Pj − fj

peak when j , then k peak when k, then j
during first subtree mem before + Pj mem before + Pk

during second subtree mem before + fj + Pk mem before + fk + Pj

▶ fk + Pj ≤ fj + Pk

▶ Transform the schedule step by step without increasing the memory.

12 / 41

Post-Order is not optimal

Post-Order traversals are arbitrarily bad in the general case

There is no constant k such that the best post-order traversal is a
k-approximation.

ϵ

M M

.

M/b
M/bM/b M/b

ϵ ϵ ϵ

M M

▶ Minimum peak memory:
Mmin = M + +

2

(b − 1)ϵ

▶ Minimum post-order peak
memory:
Mmin = M +

2

(b − 1)M/b

actual assembly trees random trees

Non optimal traversals 4.2% 61%
Maximum increase compared to optimal 18% 22%
Average increased compared to optimal 1% 12%

12 / 41

Post-Order is not optimal

Post-Order traversals are arbitrarily bad in the general case

There is no constant k such that the best post-order traversal is a
k-approximation.

ϵ ϵ ϵ ϵ

M/b

M M M

.

M/b
M/bM/b

M

▶ Minimum peak memory:
Mmin = M + +

2

(b − 1)ϵ

▶ Minimum post-order peak
memory:
Mmin = M +

2

(b − 1)M/b

actual assembly trees random trees

Non optimal traversals 4.2% 61%
Maximum increase compared to optimal 18% 22%
Average increased compared to optimal 1% 12%

12 / 41

Post-Order is not optimal

Post-Order traversals are arbitrarily bad in the general case

There is no constant k such that the best post-order traversal is a
k-approximation.

ϵ ϵ ϵ ϵ

M/b

M M M

.

M/b
M/bM/b

M

▶ Minimum peak memory:
Mmin = M + +

2

(b − 1)ϵ

▶ Minimum post-order peak
memory:
Mmin = M +

2

(b − 1)M/b

actual assembly trees random trees

Non optimal traversals 4.2% 61%
Maximum increase compared to optimal 18% 22%
Average increased compared to optimal 1% 12%

12 / 41

Post-Order is not optimal

Post-Order traversals are arbitrarily bad in the general case

There is no constant k such that the best post-order traversal is a
k-approximation.

M/b
. . .
M/b

M/b

. . .

ϵϵϵϵ

M/b

. . .

MMM M

▶ Minimum peak memory:
Mmin = M + +2(b − 1)ϵ

▶ Minimum post-order peak
memory:
Mmin = M + 2(b − 1)M/b

actual assembly trees random trees

Non optimal traversals 4.2% 61%
Maximum increase compared to optimal 18% 22%
Average increased compared to optimal 1% 12%

12 / 41

Post-Order is not optimal

Post-Order traversals are arbitrarily bad in the general case

There is no constant k such that the best post-order traversal is a
k-approximation.

M/b
. . .
M/b

M/b

. . .

ϵϵϵϵ

M/b

. . .

MMM M

▶ Minimum peak memory:
Mmin = M + +

2

(b − 1)ϵ

▶ Minimum post-order peak
memory:
Mmin = M +

2

(b − 1)M/b

actual assembly trees random trees

Non optimal traversals 4.2% 61%
Maximum increase compared to optimal 18% 22%
Average increased compared to optimal 1% 12%

13 / 41

Liu’s optimal traversal – sketch

▶ Recursive algorithm: at each step, merge the optimal ordering of each
subtree (sequence)

▶ Sequence: divided into segments:
▶ H1: maximum over the whole sequence (hill)
▶ V1: minimum after H1 (valley)
▶ H2: maximum after H1

▶ V2: minimum after H2

▶ . . .
▶ The valleys Vi s are the boundaries of the segments

▶ Combine the sequences by non-increasing H − V

▶ Complex proof based on a partial order on the cost-sequences:
(H1,V1,H2,V2, . . . ,Hr ,Vr) ≺ (H ′

1,V
′
1,H

′
2,V

′
2, . . . ,H

′
r ′ ,V

′
r ′)

if for each 1 ≤ i ≤ r , there exists 1 ≤ j ≤ r ′ with Hi ≤ H ′
j and

Vi ≤ V ′
j .

14 / 41

Memory-Aware DAG Scheduling

Task Graph Scheduling vs. Limited Memory

Reducing Memory Footprint of Task Graphs

Reducing Memory Footprint of SP-Graphs

Shared Memory of Parallel Processing
Complexity and Space-Time Tradeoffs for Trees
Processing DAGs with Limited Memory

15 / 41

Series-Parallel Graphs: Motivation

▶ Not all scientific workflows are trees

▶ But most workflows exhibit some regularity

▶ Large class of workflows: Series-Parallel graphs

15 / 41

Series-Parallel Graphs: Motivation

▶ Not all scientific workflows are trees

▶ But most workflows exhibit some regularity

▶ Large class of workflows: Series-Parallel graphs

15 / 41

Series-Parallel Graphs: Motivation

▶ Not all scientific workflows are trees

▶ But most workflows exhibit some regularity

▶ Large class of workflows: Series-Parallel graphs

SP2
SP1

15 / 41

Series-Parallel Graphs: Motivation

▶ Not all scientific workflows are trees

▶ But most workflows exhibit some regularity

▶ Large class of workflows: Series-Parallel graphs

SP1

SP2

SP2
SP1

16 / 41

First Step: Parallel-Chain Graphs

emin
i

umin
i vmin

i

s t

Edge using the minimum amount of memory, on each chain: e1, . . . , en.

Lemma

There exists an schedule with minimal memory stopping on edges
e1, . . . , en.

1. Split the graph on minimal cut e1, . . . , en

2. Apply Liu’s algorithm on resulting trees

16 / 41

First Step: Parallel-Chain Graphs

emin
i

vmin
iumin

i

ts

Edge using the minimum amount of memory, on each chain: e1, . . . , en.

Lemma

There exists an schedule with minimal memory stopping on edges
e1, . . . , en.

1. Split the graph on minimal cut e1, . . . , en

2. Apply Liu’s algorithm on resulting trees

16 / 41

First Step: Parallel-Chain Graphs

S T

umin
i vmin

i

ts

Edge using the minimum amount of memory, on each chain: e1, . . . , en.

Lemma

There exists an schedule with minimal memory stopping on edges
e1, . . . , en.

1. Split the graph on minimal cut e1, . . . , en

2. Apply Liu’s algorithm on resulting trees

17 / 41

Algorithm for General Series-Parallel Graphs

▶ Follow recursive definition of the graph
▶ Simultaneously compute minimal cut and optimal schedule
▶ Replace subgraph by linear chain corresponding to the schedule

G1 G2

series composition: G1

G2

parallel composition:

Heuristic method for general graphs

▶ Transform graph into SP-graph by adding synchronisation points

▶ Compute optimal schedule on obtained SP-graph

18 / 41

Memory-Aware DAG Scheduling

Task Graph Scheduling vs. Limited Memory

Reducing Memory Footprint of Task Graphs

Reducing Memory Footprint of SP-Graphs

Shared Memory of Parallel Processing
Complexity and Space-Time Tradeoffs for Trees
Processing DAGs with Limited Memory

19 / 41

Memory-Aware DAG Scheduling

Task Graph Scheduling vs. Limited Memory

Reducing Memory Footprint of Task Graphs

Reducing Memory Footprint of SP-Graphs

Shared Memory of Parallel Processing
Complexity and Space-Time Tradeoffs for Trees
Processing DAGs with Limited Memory

20 / 41

Model for Parallel Tree Processing

▶ p identical processors

▶ Shared memory of size M

▶ Task i has execution times pi
▶ Parallel processing of nodes ⇒ larger memory

▶ Trade-off time vs. memory

27 3

45

8

1332

12 15

21 / 41

NP-Completeness in the Pebble Game Model

Background:

▶ Makespan minimization NP-complete for trees (P|trees|Cmax)

▶ Polynomial when unit-weight tasks (P|pi = 1, trees|Cmax)

▶ Pebble game polynomial on trees

Pebble game model:

▶ Unit execution time: pi = 1

▶ Unit memory costs

Theorem

Deciding whether a tree can be scheduled using at most B pebbles in at
most C steps is NP-complete.

22 / 41

Space-Time Tradeoff

Not possible to get a guarantee on both memory and time simultaneously:

Theorem 1

There is no algorithm that is both an α-approximation for
makespan minimization and a β-approximation for memory peak
minimization when scheduling tree-shaped task graphs.

Lemma

For a schedule with peak memory M and makespan Cmax,
M × Cmax ≥ 2(n − 1)

Proof: each edge stays in memory for at least 2 steps.

22 / 41

Space-Time Tradeoff

Not possible to get a guarantee on both memory and time simultaneously:

Theorem 1

There is no algorithm that is both an α-approximation for
makespan minimization and a β-approximation for memory peak
minimization when scheduling tree-shaped task graphs.

Lemma

For a schedule with peak memory M and makespan Cmax,
M × Cmax ≥ 2(n − 1)

Proof: each edge stays in memory for at least 2 steps.

23 / 41

Space-Time Tradeoff – Proof

root

a1

b1,1 b1,2

...

b1,m

a2

b2,1 b2,2

...

b2,m

. . . am

bm,1 bm,2

...

bm,m

▶ With m2 processors: C ∗
max = 3

▶ With 1 processor, sequentialize the ai subtrees: M
∗ = 2m

▶ By contradiction, approximating both objectives:
Cmax ≤ 3α and M ≤ 2mβ

▶ But M × Cmax ≥ 2(n − 1) = 2m2 + 2m

▶ 2m2 + 2m ≤ 6mαβ

▶ Contradiction for a sufficiently large value of m

24 / 41

Complexity – Summary

For task trees:

▶ Optimizing both makespan memory is NP-Complete
⇒ Same for minimizing makespan under memory budget

▶ No scheduling algorithm can be a constant factor approximation on
both memory and makespan

25 / 41

Memory-Aware DAG Scheduling

Task Graph Scheduling vs. Limited Memory

Reducing Memory Footprint of Task Graphs

Reducing Memory Footprint of SP-Graphs

Shared Memory of Parallel Processing
Complexity and Space-Time Tradeoffs for Trees
Processing DAGs with Limited Memory

26 / 41

Processing DAGs with Limited Memory

▶ Schedule general graphs

▶ On a shared-memory platform
memory

First option: design good static scheduler:

▶ NP-complete, non-approximable

▶ Cannot react to unpredicted changes in the platform
or inaccuracies in task timings

Second option:

▶ Limit memory consumption of any dynamic scheduler
Target: runtime systems

▶ Without impacting too much parallelism

27 / 41

Part 3: Memory-Aware DAG Scheduling

Task Graph Scheduling vs. Limited Memory

Reducing Memory Footprint of Task Graphs

Reducing Memory Footprint of SP-Graphs

Shared Memory of Parallel Processing
Complexity and Space-Time Tradeoffs for Trees
Processing DAGs with Limited Memory

Model and maximum parallel memory
Maximum parallel memory/maximal topological cut
Efficient scheduling with bounded memory
Heuristics and simulations

28 / 41

Memory model

Task graphs with:
▶ Vertex weights (wi): task (estimated) durations
▶ Edge weights (mi ,j): data sizes

Simple memory model: at the beginning of a task
▶ Inputs are freed (instantaneously)
▶ Outputs are allocated

At the end of a task: outputs stay in memory

28 / 41

Memory model

Task graphs with:
▶ Vertex weights (wi): task (estimated) durations
▶ Edge weights (mi ,j): data sizes

Simple memory model: at the beginning of a task
▶ Inputs are freed (instantaneously)
▶ Outputs are allocated

At the end of a task: outputs stay in memory

A

B

C

D

E

F

1

2

3

4

5

1

5

28 / 41

Memory model

Task graphs with:
▶ Vertex weights (wi): task (estimated) durations
▶ Edge weights (mi ,j): data sizes

Simple memory model: at the beginning of a task
▶ Inputs are freed (instantaneously)
▶ Outputs are allocated

At the end of a task: outputs stay in memory

A

B

C

D

E

F

1

2

3

4

5

1

5

28 / 41

Memory model

Task graphs with:
▶ Vertex weights (wi): task (estimated) durations
▶ Edge weights (mi ,j): data sizes

Simple memory model: at the beginning of a task
▶ Inputs are freed (instantaneously)
▶ Outputs are allocated

At the end of a task: outputs stay in memory

A

B

C

D

E

F

1

2

3

4

5

1

5

28 / 41

Memory model

Task graphs with:
▶ Vertex weights (wi): task (estimated) durations
▶ Edge weights (mi ,j): data sizes

Simple memory model: at the beginning of a task
▶ Inputs are freed (instantaneously)
▶ Outputs are allocated

At the end of a task: outputs stay in memory

A

B

C

D

E

F

1

2

3

4

5

1

5

28 / 41

Memory model

Task graphs with:
▶ Vertex weights (wi): task (estimated) durations
▶ Edge weights (mi ,j): data sizes

Simple memory model: at the beginning of a task
▶ Inputs are freed (instantaneously)
▶ Outputs are allocated

At the end of a task: outputs stay in memory

A

B

C

D

E

F

1

2

3

4

5

1

5

28 / 41

Memory model

Task graphs with:
▶ Vertex weights (wi): task (estimated) durations
▶ Edge weights (mi ,j): data sizes

Simple memory model: at the beginning of a task
▶ Inputs are freed (instantaneously)
▶ Outputs are allocated

At the end of a task: outputs stay in memory

29 / 41

Part 3: Memory-Aware DAG Scheduling

Task Graph Scheduling vs. Limited Memory

Reducing Memory Footprint of Task Graphs

Reducing Memory Footprint of SP-Graphs

Shared Memory of Parallel Processing
Complexity and Space-Time Tradeoffs for Trees
Processing DAGs with Limited Memory

Model and maximum parallel memory
Maximum parallel memory/maximal topological cut
Efficient scheduling with bounded memory
Heuristics and simulations

30 / 41

Computing the maximum memory peak

Topological cut: (S ,T) with:

▶ S include the source node, T include the target node

▶ No edge from T to S

▶ Weight of the cut = weight of all edges from S to T

A

B

C

D

E

F

1

2

3

4

5

1

5

Any topological cut corresponds to a possible state when all node in S are
completed or being processed.

Two equivalent questions (in this model):

▶ What is the maximum memory of any parallel execution?

▶ What is the topological cut with maximum weight?

31 / 41

Computing the maximum topological cut

Literature:

▶ Lots of studies of various cuts in non-directed graphs ([Diaz,2000] on
Graph Layout Problems)

▶ Minimum cut is polynomial on both directed/non-directed graphs

▶ Maximum cut NP-complete on both directed/non-directed graphs
([Karp 1972] for non-directed, [Lampis 2011] for directed ones)

▶ Not much for topological cuts

Theorem.

Computing the maximum topological cut of a DAG can be done in
polynomial time.

32 / 41

Maximum topological cut – using LP

▶ Consider one classical LP formulation for finding a minimum cut:

min
∑

(i ,j)∈E

mi ,jdi ,j

∀(i , j) ∈ E , di ,j ≥ pi − pj

∀(i , j) ∈ E , di ,j ≥ 0

ps = 1, pt = 0

▶ Integer solution ⇔ topological cut

▶ Then change the optimization direction (min → max)

▶ Draw w uniformly in]0, 1[, define the cut such that
Sw = {i | pi > w}, Tw = {i | pi ≤ w}

▶ Expected cost of this cut = M∗ (opt. rational solution)

▶ All cuts with random w have the same cost M∗

32 / 41

Maximum topological cut – using LP

▶ Consider one classical LP formulation for finding a minimum cut:

min
∑

(i ,j)∈E

mi ,jdi ,j

∀(i , j) ∈ E , di ,j ≥ pi − pj

∀(i , j) ∈ E , di ,j ≥ 0

ps = 1, pt = 0

▶ Integer solution ⇔ topological cut

▶ Then change the optimization direction (min → max)

▶ Draw w uniformly in]0, 1[, define the cut such that
Sw = {i | pi > w}, Tw = {i | pi ≤ w}

▶ Expected cost of this cut = M∗ (opt. rational solution)

▶ All cuts with random w have the same cost M∗

32 / 41

Maximum topological cut – using LP

▶ Consider one classical LP formulation for finding a minimum cut:

max
∑

(i ,j)∈E

mi ,jdi ,j

∀(i , j) ∈ E , di ,j = pi − pj

∀(i , j) ∈ E , di ,j ≥ 0

ps = 1, pt = 0

▶ Integer solution ⇔ topological cut

▶ Then change the optimization direction (min → max)

▶ Draw w uniformly in]0, 1[, define the cut such that
Sw = {i | pi > w}, Tw = {i | pi ≤ w}

▶ Expected cost of this cut = M∗ (opt. rational solution)

▶ All cuts with random w have the same cost M∗

32 / 41

Maximum topological cut – using LP

▶ Consider one classical LP formulation for finding a minimum cut:

max
∑

(i ,j)∈E

mi ,jdi ,j

∀(i , j) ∈ E , di ,j = pi − pj

∀(i , j) ∈ E , di ,j ≥ 0

ps = 1, pt = 0

▶ Integer solution ⇔ topological cut

▶ Then change the optimization direction (min → max)

▶ Draw w uniformly in]0, 1[, define the cut such that
Sw = {i | pi > w}, Tw = {i | pi ≤ w}

▶ Expected cost of this cut = M∗ (opt. rational solution)

▶ All cuts with random w have the same cost M∗

33 / 41

Maximum topological cut – direct algorithm

▶ Dual problem: Min-Flow (larger than all edge weights)

▶ Idea: use an optimal algorithm for Max-Flow

Algorithm sketch

1. Build a large flow F on the graph G

2. Consider Gdiff with edge weights Fi ,j −mi ,j

3. Compute a maximum flow maxdiff in Gdiff

4. F −maxdiff is a minimum flow in G

5. Residual graph → maximum topological cut mi ,j

Fi ,j

diff i ,j

maxdiff i ,j

MinFlow i ,j

Complexity: same as maximum flow, e.g., O(|V |2|E |)

33 / 41

Maximum topological cut – direct algorithm

▶ Dual problem: Min-Flow (larger than all edge weights)

▶ Idea: use an optimal algorithm for Max-Flow

Algorithm sketch

1. Build a large flow F on the graph G

2. Consider Gdiff with edge weights Fi ,j −mi ,j

3. Compute a maximum flow maxdiff in Gdiff

4. F −maxdiff is a minimum flow in G

5. Residual graph → maximum topological cut mi ,j

Fi ,j

diff i ,j

maxdiff i ,j

MinFlow i ,j

Complexity: same as maximum flow, e.g., O(|V |2|E |)

33 / 41

Maximum topological cut – direct algorithm

▶ Dual problem: Min-Flow (larger than all edge weights)

▶ Idea: use an optimal algorithm for Max-Flow

Algorithm sketch

1. Build a large flow F on the graph G

2. Consider Gdiff with edge weights Fi ,j −mi ,j

3. Compute a maximum flow maxdiff in Gdiff

4. F −maxdiff is a minimum flow in G

5. Residual graph → maximum topological cut mi ,j

Fi ,j

diff i ,j

maxdiff i ,j

MinFlow i ,j

Complexity: same as maximum flow, e.g., O(|V |2|E |)

33 / 41

Maximum topological cut – direct algorithm

▶ Dual problem: Min-Flow (larger than all edge weights)

▶ Idea: use an optimal algorithm for Max-Flow

Algorithm sketch

1. Build a large flow F on the graph G

2. Consider Gdiff with edge weights Fi ,j −mi ,j

3. Compute a maximum flow maxdiff in Gdiff

4. F −maxdiff is a minimum flow in G

5. Residual graph → maximum topological cut mi ,j

Fi ,j

diff i ,j

maxdiff i ,j

MinFlow i ,j

Complexity: same as maximum flow, e.g., O(|V |2|E |)

33 / 41

Maximum topological cut – direct algorithm

▶ Dual problem: Min-Flow (larger than all edge weights)

▶ Idea: use an optimal algorithm for Max-Flow

Algorithm sketch

1. Build a large flow F on the graph G

2. Consider Gdiff with edge weights Fi ,j −mi ,j

3. Compute a maximum flow maxdiff in Gdiff

4. F −maxdiff is a minimum flow in G

5. Residual graph → maximum topological cut mi ,j

Fi ,j

diff i ,j

maxdiff i ,j

MinFlow i ,j

Complexity: same as maximum flow, e.g., O(|V |2|E |)

34 / 41

Summary

Predict the maximal memory of any dynamic scheduling
⇔

Compute the maximal topological cut

Two algorithms:

▶ Linear program + rounding

▶ Direct algorithm based on MaxFlow/MinCut

35 / 41

Part 3: Memory-Aware DAG Scheduling

Task Graph Scheduling vs. Limited Memory

Reducing Memory Footprint of Task Graphs

Reducing Memory Footprint of SP-Graphs

Shared Memory of Parallel Processing
Complexity and Space-Time Tradeoffs for Trees
Processing DAGs with Limited Memory

Model and maximum parallel memory
Maximum parallel memory/maximal topological cut
Efficient scheduling with bounded memory
Heuristics and simulations

36 / 41

Coping with limiting memory

Problem:

▶ Limited available memory M

▶ Allow use of dynamic schedulers

▶ Avoid running out of memory

▶ Keep high level of parallelism (as much as possible)

Possible solution:

▶ Add edges to guarantee that any parallel execution stays below M
fictitious dependencies to reduce maximum memory

▶ Minimize the obtained critical path

A

B

C

D

E

F

1

2

3

4

5

1

5

M = 10

36 / 41

Coping with limiting memory

Problem:

▶ Limited available memory M

▶ Allow use of dynamic schedulers

▶ Avoid running out of memory

▶ Keep high level of parallelism (as much as possible)

Possible solution:

▶ Add edges to guarantee that any parallel execution stays below M
fictitious dependencies to reduce maximum memory

▶ Minimize the obtained critical path

A

B

C

D

E

F

1

2

3

4

5

1

5

M = 10

36 / 41

Coping with limiting memory

Problem:

▶ Limited available memory M

▶ Allow use of dynamic schedulers

▶ Avoid running out of memory

▶ Keep high level of parallelism (as much as possible)

Possible solution:

▶ Add edges to guarantee that any parallel execution stays below M
fictitious dependencies to reduce maximum memory

▶ Minimize the obtained critical path

A

B

C

D

E

F

1

2

3

4

5

1

5

M = 10

37 / 41

Problem definition and complexity

Definition (PartialSerialization).

Given a DAG G = (V ,E) and a bound M, find a set of new edges E ′ such
that G ′ = (V ,E ∪ E ′) is a DAG, MaxMem(G ′) ≤ M and CritPath(G ′) is
minimized.

Theorem.

PartialSerialization is NP-hard in the stronge sense.

NB: stays NP-hard if we are given a sequential schedule σ of G which uses
at most a memory M.

38 / 41

Part 3: Memory-Aware DAG Scheduling

Task Graph Scheduling vs. Limited Memory

Reducing Memory Footprint of Task Graphs

Reducing Memory Footprint of SP-Graphs

Shared Memory of Parallel Processing
Complexity and Space-Time Tradeoffs for Trees
Processing DAGs with Limited Memory

Model and maximum parallel memory
Maximum parallel memory/maximal topological cut
Efficient scheduling with bounded memory
Heuristics and simulations

39 / 41

Heuristic solutions for PartialSerialization
Framework:
(inspired by [Sb̂ırlea et al. 2014])

1. Compute a max. top. cut (S ,T)

2. If weight ≤ M : exit with success

3. Add edge (u, v) with u ∈ T , v ∈ S without
creating cycles (or fail)

4. Goto Step 1

S

s t

T

v

u

Several heuristic choices for Step 3:

MinLevels does not create a large critical path

RespectOrder follows a precomputed memory-efficient schedule, always
succeeds

MaxSize targets nodes dealing with large data

MaxMinSize variant of MaxSize

40 / 41

Simulations – Pegasus workflows (LIGO 100 nodes)

0

5

10

15

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized memory bound

N
o
rm

al
iz
ed

cr
it
ic
al

p
a
th

Heuristic MinLevels RespectOrder MaxMinSize MaxSize

DFS memory ≡ 0 1 ≡ MaxTopCut

lower is
better

▶ Median ratio MaxTopCut / DFS ≈ 20

▶ MinLevels performs best, RespectOrder always succeeds

▶ Memory divided by 5 – critical path multiplied by 3

40 / 41

Simulations – Pegasus workflows (LIGO 100 nodes)

0

5

10

15

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized memory bound

N
o
rm

al
iz
ed

cr
it
ic
al

p
a
th

Heuristic MinLevels RespectOrder MaxMinSize MaxSize

DFS memory ≡ 0 1 ≡ MaxTopCut

lower is
better

▶ Median ratio MaxTopCut / DFS ≈ 20

▶ MinLevels performs best, RespectOrder always succeeds

▶ Memory divided by 5 – critical path multiplied by 3

41 / 41

Summary and Perspectives

▶ DAGs: convenient way to model structured computations, can include
memory demand

▶ Polynomial algorithms to limit memory for simple graphs: trees, SP
(sequential scheduling)

▶ Parallel processing: trade-off memory vs. disk, NP-complete even for
trees, but workarounds exist!

▶ Other models exist:
▶ Memory demand for computation
▶ Output data shared by several successors

▶ Other problems:
▶ If memory too scarce, store data on disk, minimize I/Os
▶ Or delete data and recompute it later

(“offloading” in neural network training)

41 / 41

Summary and Perspectives

▶ DAGs: convenient way to model structured computations, can include
memory demand

▶ Polynomial algorithms to limit memory for simple graphs: trees, SP
(sequential scheduling)

▶ Parallel processing: trade-off memory vs. disk, NP-complete even for
trees, but workarounds exist!

▶ Other models exist:
▶ Memory demand for computation
▶ Output data shared by several successors

▶ Other problems:
▶ If memory too scarce, store data on disk, minimize I/Os
▶ Or delete data and recompute it later

(“offloading” in neural network training)

	Task Graph Scheduling vs. Limited Memory
	Reducing Memory Footprint of Task Graphs
	Reducing Memory Footprint of SP-Graphs
	Shared Memory of Parallel Processing
	Complexity and Space-Time Tradeoffs for Trees
	Processing DAGs with Limited Memory

