Low-Rank Compression in Sparse direct solvers

Grégoire Pichon

CNRS, INRIA, Université Lyon 1 & ENS Lyon
October, 10th 2023

Context

Sparse direct solvers

- Very robust wrt other approaches
- High time and memory complexities
- Using efficient BLAS Level 3 kernels

Low-rank compression

- Represent data in low-rank form
- Reduce storage and operations cost
- Reduce the quality of the representation

Block LU

Algorithm 1 LU Factorization

1: **for**
$$k = 1$$
 to n **do**

2: Factorize
$$A_{kk} = L_{kk} U_{kk}$$

3: **for**
$$i = k + 1$$
 to n **do**

4: Solve
$$A_{ik} = L_{ik} * U_{kk}$$

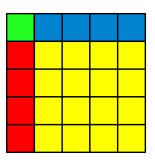
5: **for**
$$i = k + 1$$
 to n **do**

6: Solve
$$A_{kj} = L_{kk} * U_{kj}$$

7: **for**
$$i = k + 1$$
 to n **do**

8: **for**
$$j = k + 1$$
 to n **do**

9:
$$A_{ij} = A_{ij} - L_{ik} * U_{kj}$$



Outline

- Sparse direct solvers
 - Structure: fill-in, dependencies
 - Complexity
- 2 Low-rank compression
- 3 Low-rank into sparse direct solvers
 - General approach
 - PASTIX strategies

Outline

- Sparse direct solvers
 - Structure: fill-in, dependencies
 - Complexity
- 2 Low-rank compression
- 3 Low-rank into sparse direct solvers
 - General approach
 - PASTIX strategies

Sparse matrices

Where they come from

- Many applications
- Discretization of PDEs
- Finite Element Method on 2D/3D graphs

Possible factorization

- A = LU if A is general
- $A = LDL^t$ if A is symmetric
- $A = LL^t$ if A is symmetric positive definite

In this class, we will only consider matrices that are at least symmetric in structure: $a_{i,j} \neq 0 \Rightarrow a_{i,j} \neq 0$.

If not, we will work on the structure of $A + A^t$.

Fill-in problem with A symmetric

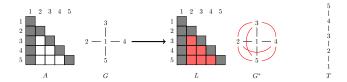


Figure: Natural ordering

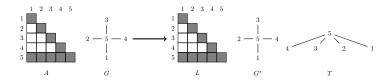
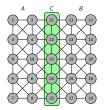


Figure: Optimal ordering

Ordering with Nested Dissection

Partition $V = A \cup \overline{B \cup C}$

- **①** Order C with larger indices: $V_A < V_C$ and $V_B < V_C$
- Apply the process recursively on A and B
- Apply local heuristic such as AMF on small subgraphs



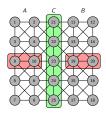
Nested dissection performed by an external partitioner tool

- Find a separator C as small as possible
- Balance subparts A and B

Ordering with Nested Dissection

Partition $V = A \cup B \cup C$

- **①** Order C with larger indices: $V_A < V_C$ and $V_B < V_C$
- Apply the process recursively on A and B
- Apply local heuristic such as AMF on small subgraphs



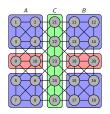
Nested dissection performed by an external partitioner tool

- Find a separator C as small as possible
- Balance subparts A and B

Ordering with Nested Dissection

Partition $V = A \cup \overline{B} \cup \overline{C}$

- **①** Order C with larger indices: $V_A < V_C$ and $V_B < V_C$
- Apply the process recursively on A and B
- Apply local heuristic such as AMF on small subgraphs



Nested dissection performed by an external partitioner tool

- Find a separator C as small as possible
- Balance subparts A and B

Building an efficient solver

Efficiency

- Sparse structure, small blocks
- The underlying hardware requires smart memory management
- We would like to know the final structure before starting the factorization to better balance memory and computations

Parallelism

- Express high level of parallelism
- Avoid bottlenecks
- Still keeping a sufficient granularity

Symbolic factorization – naive algorithm

Theorem

(Characterization Theorem) Given an $n \times n$ sparse matrix A, and its adjacency graph G = (V, E), any entry $a_{i,j} = 0$ from A will become a non-null entry in the factorized matrix if and only if there is a path in G from vertex i to vertex j that only goes through vertices with a lower index than i and j.

Algorithm 2 Naive algorithm, as expensive as the numerical factorization

- 1: **for** k = 1 to n **do**
- 2: Build $Col(A_{*,k})$ the set of vertices adjacent to V_k
- 3: **for** i in $Col(A_{*,k})$ **do**
- 4: **for** j in $Col(A_{*,k})$ **do**
- 5: If $a_{i,j} = 0$ fill-in entry (when forming the clique)

Symbolic factorization – linear algorithm

Objects

- $Col(A_{*,k})$ is the set of vertices adjacent to V_k
- $SCol(A_{*,k})$ is the sorted version of $Col(A_{*,k})$

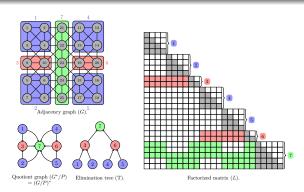
Algorithm 3 Linear algorithm: optimal

- 1: **for** k = 1 to n **do**
- 2: Build $SCol(A_{*,k})$ the sorted set of vertices adjacent to V_k
- 3: **for** k = 1 to n **do**
- 4: Select *first*, the first element of $SCol(A_{*,k})$
- 5: $SCol(A_{*,first}) = SCol(A_{*,first}) \cup SCol(A_{*,k})$

Block Symbolic Factorization

General approach

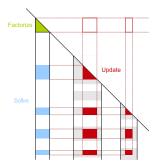
- Build a partition with the nested dissection process
- Compress information on data blocks
- Ompute the block elimination tree using the block quotient graph



Block Numerical Factorization

Algorithm to eliminate the k^{th} supernode

- Factorize the diagonal block (POTRF/GETRF)
- Solve off-diagonal blocks in the current supernode (TRSM)
- Update the trailing matrix with the supernode contribution (GEMM)



Outline

- Sparse direct solvers
 - Structure: fill-in, dependencies
 - Complexity
- 2 Low-rank compression
- 3 Low-rank into sparse direct solvers
 - General approach
 - PASTIX strategies

Context of the complexity study

Conditions

- For bounded-density graphs [Miller, Vavasis - 1991]
- $\bar{G} = (\bar{V}, \bar{E})$ with $|\bar{V}| = p$
- Partition into $\bar{V} = A \cup B \cup C$

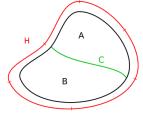


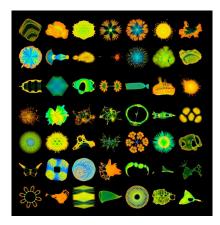
Figure: Partitioning a graph

p^{σ} -Separation Theorem [Lipton, Tarjan - 1979] when using nested dissection

- $0 < \alpha < 1$, $\beta > 0$, $\frac{1}{2} \le \sigma < 1$
- $|A| \leq \alpha p$, $|B| \leq \alpha p$
- $|C| \leq \beta p^{\sigma}$

Context of the Study

The University of Florida Sparse Matrix Collection



Computation

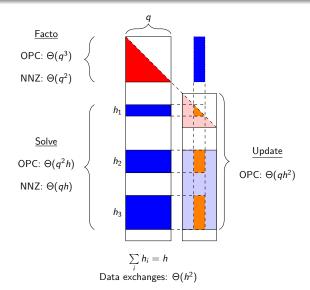
Properties

- $|C| = q \leq \beta p^{\sigma}$
- $|H| = h = \Theta(q)$: halo size for graphs with a good aspect ratio

Operations

- Storage: $\Theta(q^2)$ for a q-by-q block
- Factorization (GETRF): $\Theta(q^3)$ for a q-by-q block
- Solve (TRSM): $\Theta(q^2h)$ when solving h unknowns with the previous factorization
- Update (GEMM): $\Theta(qh_1h_2)$ when updating (any block) with the product of a $h_1 \times q$ block with a $h_2 \times q$ block

Complexity on a Block-Column



Complexity on a Block-Column

In practice

ullet For a d-dim bounded-density graph, $\sigma=rac{d-1}{d}$

$$compl(\bar{G}, H) \leq contrib_C + compl(A, H_A) + compl(B, H_B)$$

Overall complexity depending on $contrib_{\mathcal{C}}=\Theta(p^y)$ [Lipton, Rose, Tarjan - 1977]

- $y < 1 \rightarrow \Theta(n)$
- $y = 1 \rightarrow \Theta(n \ln(n))$
- $y > 1 \rightarrow \Theta(n^y)$

Results

For the Factorization on general 2D/3D finite element meshes

Previous results

• OPC: $\Theta(p^{3\sigma})$

• NNZ: $\Theta(p^{2\sigma})$

	2D	3D	
C	$\sigma = \frac{1}{2}$	$\sigma = \frac{2}{3}$	
OPC	NNZ	OPC	NNZ
$\Theta(n^{\frac{3}{2}})$	$\Theta(n \ln(n))$	$\Theta(n^2)$	$\Theta(n^{\frac{4}{3}})$

Outline

- Sparse direct solvers
 - Structure: fill-in, dependencies
 - Complexity
- 2 Low-rank compression
- 3 Low-rank into sparse direct solvers
 - General approach
 - PASTIX strategies

Objectives

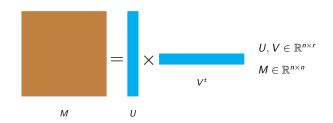
Reduce the complexity

- Replace dense blocks by low-rank blocks
- Adapt underlying kernels

Similar properties

- Keep the same level of parallelism
- Use efficient underlying kernels

Low-rank compression



Storage in 2nr instead of n^2

Figure: Original picture, n = 500

Figure: r = 10, 4% of original storage

Figure: r = 50, 20% of original storage

Rank definitions (1/2)

Rank

The rank k of a matrix A is defined as the smallest integer such that there exist matrices U and V of size $n \times k$ with $A = UV^t$

Numerical rank

The numerical rank k_ϵ of a matrix A at accuracy ϵ is defined as the smallest integer such that there exists a matrix A_ϵ of rank k_ϵ with $||A-A_\epsilon|| \le \epsilon$

Rank definitions (2/2)

Eckart-Young theorem

Let $U\Sigma V^t$ be the SVD decomposition of A and $\sigma_i = \Sigma_{i,i}$ be its singular values. Then, $\hat{A} = U_{1:n,1:k}\Sigma_{1:k}V^t_{1:n,1:k}$ is the optimal rank-k approximation of A and $||A - \hat{A}||_2 = \sigma_{k+1}$

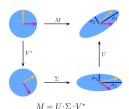
Low-rank matrix

A is said to be low-rank (for a given accuracy ϵ) if its numerical rank k_{ϵ} is small enough such that its rank- k_{ϵ} approximation requires less storage than the full-rank matrix A, i.e., if $k_{\epsilon}(m+n) \leq mn$

Singular Value Decomposition (Figure from Wikipedia)

Idea

- Image of the unit sphere
- The singular values can be seen as the magnitude of the semiaxis of an n-dimensional ellipsoid
- Unique decomposition
- The smallest singular values represent less important data



QR Factorization (1/2)

Idea

- For rectangular matrices
- A = QR, A of size $m \times n$, Q of size $m \times m$, R of size $m \times n$
- ullet Q is orthogonal, R is upper triangular

Reduced QR

- If the matrix is not full-rank, some columns of R will be made of zeroes
- Can be used to compress a matrix

QR Factorization (2/2)

How to build it?

- Gram-Schmidt Orthogonalization
- Using Givens rotations
- Using reflections with Householder matrices

Ideas behind Householder matrices

- Cancel elements below the diagonal in R
- First step where x is the first column of A
 - $e_1 = (1, 0, \dots, 0)^t$
 - 2 $u = x ||x||e_1$ (or +||x|| if $x_1 < 0$)
 - \circ $v = \frac{u}{||u||}$
 - $Q_1 = I 2vv^t$
 - \bigcirc In Q_1A , only the first element of the first column is non-zero

Rank-Revealing QR Factorization

Algorithm 4 QR with Column Pivoting: [Q, R, P] = QRCP(A)

for
$$j=1,2,...,min(m,n)$$
 do $p_j=\max_{l=j-1,...,n}(||A_{:;l}^{(j-1)}||_2)
ightharpoonup$ Find the pivot $A^{(j-1)}=A^{(j-1)}p_j
ightharpoonup$ Apply the pivot $H^{(j)}=I-y_j\tau_jy_j^T
ightharpoonup$ Compute the Householder reflection $A^{(j)}=H^{(j)}A^{(j-1)}
ightharpoonup$ Update the trailing matrix

In practice, stop when the norm of the trailing submatrix is small enough

Compression kernels

Kernel	Complexity
Singular Value Decomposition (SVD)	$\Theta(mn^2)$
Rank-Revealing QR (RRQR) RRQR with randomization	$\Theta(mnr)$ $\Theta(mnr)$
ACA, BDLR, CUR	$\Theta((m+n)r)$

Properties

- ullet SVD provides the best ranks at a given accuracy with $||.||_2$
- RRQR keeps a control of accuracy, but efficiency is poor due to pivoting
- Randomization techniques are suitable to perform a rank-r approximation but may be costly for computing an accurate representation
- The accuracy of ACA/BDLR/CUR is problem dependent

Compression formats for dense matrices

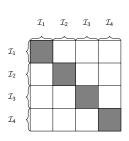


Figure: BLR clustering

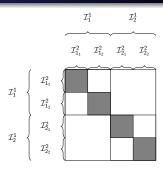


Figure: HODLR clustering

Block-admissibility	Partitioning		
	Flat Hierarchical		
		Without nested bases	With nested bases
Weak	BI R	HODLR	HSS
Strong	DLN	${\cal H}$	\mathcal{H}^2

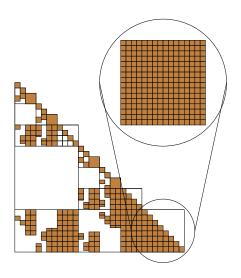
Outline

- Sparse direct solvers
 - Structure: fill-in, dependencies
 - Complexity
- 2 Low-rank compression
- 3 Low-rank into sparse direct solvers
 - General approach
 - PASTIX strategies

Outline

- Sparse direct solvers
 - Structure: fill-in, dependencies
 - Complexity
- 2 Low-rank compression
- 3 Low-rank into sparse direct solvers
 - General approach
 - PASTIX strategies

BLR compression – Symbolic factorization



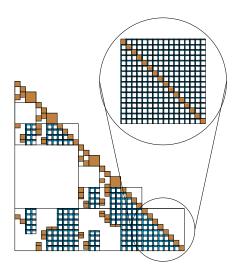
Approach

- Large supernodes are split
- It increases the level of parallelism

Operations

- Dense diagonal blocks
- TRSM are performed on dense off-diagonal blocks
- GEMM are performed between dense off-diagonal blocks

BLR compression – Symbolic factorization



Approach

- Large supernodes are split
- Large off-diagonal blocks are low-rank

Operations

- Dense diagonal blocks
- TRSM are performed on low-rank off-diagonal blocks
- GEMM are performed between low-rank off-diagonal blocks

Outline

- Sparse direct solvers
 - Structure: fill-in, dependencies
 - Complexity
- 2 Low-rank compression
- 3 Low-rank into sparse direct solvers
 - General approach
 - PASTIX strategies

When to compress?

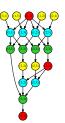
What do we have for now?

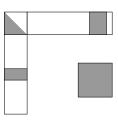
- Methods to compress dense blocks into low-rank form
- We potentially need to perform operations differently on low-rank blocks

Several strategies to choose when to compress

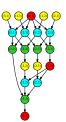
- During the allocation of the matrix
- When a block has received all its updates
- When a block was eliminated

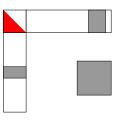
- Eliminate each column block
 - Factorize the dense diagonal block
 Compress off-diagonal blocks belonging to the supernode
 - Apply a TRSM on LR blocks (cheaper)
 - LR update on dense matrices (LR2GE extend-add)
- Solve triangular systems with low-rank blocks



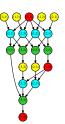


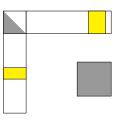
- Eliminate each column block
 - Factorize the dense diagonal block
 Compress off-diagonal blocks belonging to the supernode
 - Apply a TRSM on LR blocks (cheaper)
 - LR update on dense matrices (LR2GE extend-add)
- Solve triangular systems with low-rank blocks



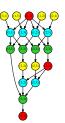


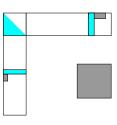
- Eliminate each column block
 - Factorize the dense diagonal block
 Compress off-diagonal blocks belonging to the supernode
 - Apply a TRSM on LR blocks (cheaper)
 - LR update on dense matrices (LR2GE extend-add)
- Solve triangular systems with low-rank blocks



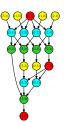


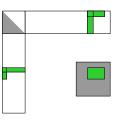
- Eliminate each column block
 - Factorize the dense diagonal block
 Compress off-diagonal blocks belonging to the supernode
 - Apply a TRSM on LR blocks (cheaper)
 - LR update on dense matrices (LR2GE extend-add)
- Solve triangular systems with low-rank blocks





- Eliminate each column block
 - Factorize the dense diagonal block
 Compress off-diagonal blocks belonging to the supernode
 - Apply a TRSM on LR blocks (cheaper)
 - LR update on dense matrices (LR2GE extend-add)
- Solve triangular systems with low-rank blocks





Summary of the Just-In-Time strategy

Advantages

- The expensive update operation, is faster using LR2GE kernel
- The formation of the dense update and its application is not expensive
- The size of the factors is reduced, as well as the solve cost

A limitation of this approach

- All blocks are allocated in full-rank before being compressed
- Limiting this constraint may reduce the level of parallelism

Just-In-Time

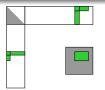
Summary of the *Just-In-Time* strategy

Advantages

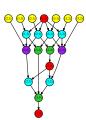
- The expensive update operation, is faster using LR2GE kernel
- The formation of the dense update and its application is not expensive
- The size of the factors is reduced, as well as the solve cost

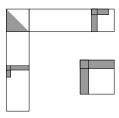
A limitation of this approach

- All blocks are allocated in full-rank before being compressed
- Limiting this constraint may reduce the level of parallelism

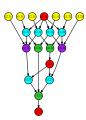


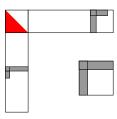
- Compress large off-diagonal blocks in A (exploiting sparsity)
- 2 Eliminate each column block
 - Factorize the dense diagonal block
 - Apply a TRSM on LR blocks (cheaper)
 - Supplies the strategy of th
- Solve triangular systems with LR blocks



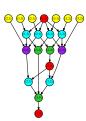


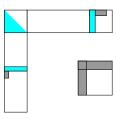
- Compress large off-diagonal blocks in A (exploiting sparsity)
- Eliminate each column block
 - Factorize the dense diagonal block
 - 2 Apply a TRSM on LR blocks (cheaper)
 - 3 LR update on LR matrices (LR2LR extend-add)
- Solve triangular systems with LR blocks



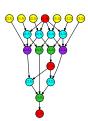


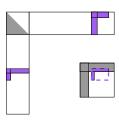
- Compress large off-diagonal blocks in A (exploiting sparsity)
- Eliminate each column block
 - Factorize the dense diagonal block
 - Apply a TRSM on LR blocks (cheaper)
 - 3 LR update on LR matrices (LR2LR extend-add)
- Solve triangular systems with LR blocks





- Compress large off-diagonal blocks in A (exploiting sparsity)
- 2 Eliminate each column block
 - Factorize the dense diagonal block
 - Apply a TRSM on LR blocks (cheaper)
 - 3 LR update on LR matrices (LR2LR extend-add)
- Solve triangular systems with LR blocks





Solve operation

The solve operation for a generic lower triangular matrix L is applied to blocks in low-rank forms in our two scenarios.

- 1: Solve $A_{ik} = L_{ik} U_{kk}$
- 2: Solve $A_{kj} = L_{kk} U_{kj}$

Steps for (2) – similar for (1)

- 2 Let us take $V_x^t = V_b^t$
- We need to solve $LU_x = U_b$

The operation is then equivalent to applying a dense solve only to U_b , and the complexity is only $\Theta(m_L^2 r_x)$, instead of $\Theta(m_L^2 n_L)$ for the full-rank (dense) representation.

Extend-add process: $C = C - AB^t$

Product of two low-rank blocks with recompression

•
$$\hat{A}\hat{B}^t = (u_A(v_A^t v_B))u_B^t = u_A((v_A^t v_B)u_B^t)$$

- Recompression
 - $T = (v_A^t v_B)$
 - $\hat{T} = \widehat{v_A^t v_B} = u_T v_T^t$
 - $\hat{A}\hat{B}^t = (u_A u_T)(v_T^t v_B^t)$

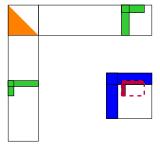
Application to a dense matrix (LR2GE)

Form explicitly the product

Application to a low-rank matrix (LR2LR)

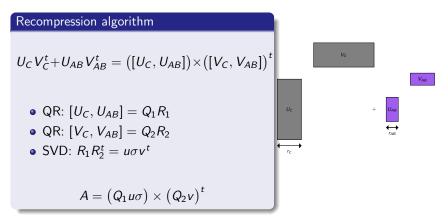
• $u_{C'}v_{C'}^t = [u_C, u_{AB}]([v_C, -v_{AB}])^t$ (recompression ?)

Focus on the LR2LR kernel



LR2LR kernel using SVD

A low-rank structure $U_C V_C^t$ receives a low-rank contribution $U_{AB} V_{AB}^t$



The complexity of this operation depends on the dimensions of C

LR2LR kernel using SVD

A low-rank structure $U_C V_C^t$ receives a low-rank contribution $U_{AB} V_{AB}^t$

Recompression algorithm

$$U_C V_C^t + U_{AB} V_{AB}^t = \big([U_C, U_{AB}] \big) \times \big([V_C, V_{AB}] \big)^t$$

- QR: $[U_C, U_{AB}] = Q_1 R_1$
- QR: $[V_C, V_{AB}] = Q_2 R_2$
- SVD: $R_1 R_2^t = u \sigma v^t$

$$A = (Q_1 u \sigma) \times (Q_2 v)^t$$

The complexity of this operation depends on the dimensions of C

LR2LR kernel using SVD

A low-rank structure $U_C V_C^t$ receives a low-rank contribution $U_{AB} V_{AB}^t$

Recompression algorithm

$$U_C V_C^t + U_{AB} V_{AB}^t = \big([U_C, U_{AB}] \big) \times \big([V_C, V_{AB}] \big)^t$$

- QR: $[U_C, U_{AB}] = Q_1 R_1$
- QR: $[V_C, V_{AB}] = Q_2 R_2$
- SVD: $R_1 R_2^t = u \sigma v^t$

$$A = (Q_1 u \sigma) \times (Q_2 v)^t$$

The complexity of this operation depends on the dimensions of C

LR2LR kernel using RRQR

Taking advantage of orthogonality

- If we handle low-rank matrices of the form uv^t, we can ensure that u matrices are always orthogonal
- This is true after the first compression (for SVD, apply singular values on the right)
- This is conserved by the **Solve** and the **Update** operations
- Warning: we have to store U^t in the LU factorization to ensure orthogonality

Maintaining orthogonality by enlarging an existing basis

- QR or partialQR
- Modified Gram-Schmidt

Extend-add: RRQR Recompression

A low-rank structure $u_1v_1^t$ receives a low-rank contribution $u_2v_2^t$. u_1 and u_2 are orthogonal matrices

Algorithm

$$A = u_1 v_1^t + u_2 v_2^t = ([u_1, u_2]) \times ([v_1, v_2])^t$$

Orthogonalize u_2 with respect to u_1 :

$$u_2^* = u_2 - u_1(u_1^t u_2)$$

Form new orthogonal basis, and normalize each column:

$$[u_1, u_2] = [u_1, u_2^*] \times \begin{pmatrix} I & u_1^t u_2 \\ 0 & I \end{pmatrix}$$

Apply a RRQR on:

$$\begin{pmatrix} I & u_1^t u_2 \\ 0 & I \end{pmatrix} \times \begin{pmatrix} [v_1, v_2] \end{pmatrix}^t$$

Experimental setup

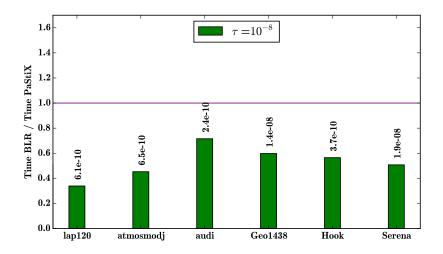
Machine: 2 INTEL Xeon E5 – 2680v3 at 2.50 GHz

- 128 GB
- 24 threads
- Parallelism is obtained following PASTIX static scheduling for multi-threaded architectures

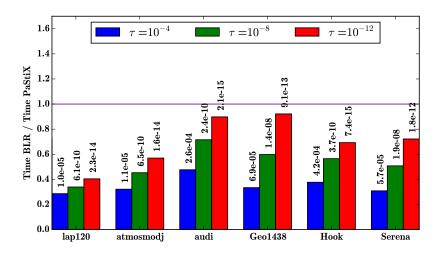
Entry parameters

- Tolerance τ : absolute parameter (normalized for each block)
- Compression method is RRQR
- Blocking sizes: between 128 and 256 in following experiments

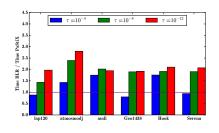
Performance of RRQR/Just-In-Time wrt full-rank version



Performance of RRQR/Just-In-Time wrt full-rank version

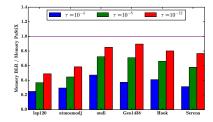


Behavior of RRQR/Minimal Memory wrt full-rank version



Performance

- Increase by a factor of 1.9 for $\tau=10^{-8}$
- Better for a lower accuracy



Memory peak

- Reduction by a factor of 1.7 for $\tau = 10^{-8}$
- Close to the results obtained using SVD

Summary

A $330^3=36M$ unknowns Laplacian has been solved with $\tau=10^{-4}$ while it was restricted to $220^3=8M$ using the full-rank version

Memory consumption

- Minimal Memory strategy really saves memory
- Just-In-Time strategy reduces the size of L' factors, but supernodes are allocated dense at the beginning: no gain in pure right-looking

Factorization time

- Minimal Memory strategy requires expensive extend-add algorithms to update (recompress) low-rank structures with the LR2LR kernel
- Just-In-Time strategy continues to apply dense update at a smaller cost through the LR2GE kernel