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Abstract. Training Deep Neural Networks is known to be an expensive
operation, both in terms of computational cost and memory load. Indeed,
during training, all intermediate layer outputs (called activations) com-
puted during the forward phase must be stored until the correspond-
ing gradient has been computed in the backward phase. These memory
requirements sometimes prevent to consider larger batch sizes and deeper
networks, so that they can limit both convergence speed and accuracy.
Recent works have proposed to offload some of the computed forward
activations from the device memory to the main memory and requires to
determine which activations should be offloaded and when these trans-
fers should take place. We prove that this problem is NP-complete in the
strong sense, and propose two heuristics based on relaxations of the prob-
lem. We then conduct a thorough experimental evaluation of standard
deep neural networks.

Keywords: Memory management · Deep Neural Network · Dynamic
programming · Scheduling

1 Introduction

Training for Deep Learning Networks (DNNs) has become a major compute
intensive application [9,10], typically performed on GPU clusters. The training
phase involves two traversals of the graph representing the DNN, one in direct
order which is called forward propagation and one in reverse order called back-
ward propagation. This incurs high memory usage: the tensors computed during
the forward phase, called forward activations, must be kept in memory until the
associated backward operation is performed, since they are required to compute
the gradients and to update the weights. Therefore, memory issues become cru-
cial when performing training in DNNs, and the memory limitation of current
hardware often prevents data scientists from considering larger models, larger
image sizes or larger batch sizes [15,18].

For instance, when using ResNet101 with relatively small images of size 224×
224 and a batch size of 32, the resulting size during training is around 5GB. For
applications which require to detect small objects in the images [4], the image
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resolution must be increased, and the memory required for storing activations
increases quadratically with the image resolution. The situation is even worse
when moving to 3D object recognition [6] or video based DNNs such as 3D-
Resnet [8] or CDC [19].

Many approaches have been proposed in the literature in order to circum-
vent this memory issue. In this paper, we focus on an offloading approach
(also called memory swapping), which consists in reducing memory usage on
the GPU (device memory) by transferring some activations to the CPU (main
memory), which is expected to be at least one order of magnitude larger. The
corresponding algorithmic question is to determine which activations should be
offloaded and when, and also when offloaded activations should be brought back
(prefetched) from the main memory to the device memory. This approach has
been recently considered in [1,13,14,16,20,21], where the authors advocate the
general idea and propose several static heuristics to decide which activations
should be offloaded. In this paper, we provide a deeper analysis of this problem.
More specifically, we prove that the general problem, even for sequential mod-
els, is strongly NP-complete where only fully integral data transfers are possible
and we analyze two relaxations of the problem for which we can derive opti-
mal algorithms. These algorithms can then be used as heuristics for the general
problem.

The rest of the paper is organized as follows. In Sect. 2, we discuss previ-
ous works regarding offloading, as well as other techniques to reduce memory
usage during the training phase. In Sect. 3, we present the model and notations
used throughout the paper, and assess the complexity of the problem. In Sect. 4,
we propose a first relaxation where activations can be partially or completely
offloaded into the main memory, and derive an optimal strategy. In Sect. 5, we
consider the case where partial offloading is not possible, but where communi-
cations can be interrupted, and we present a dynamic programming algorithm
to find the optimal schedule. In Sect. 6, we provide experimental results and we
assess the efficiency of our heuristics against the previous approach [1,13,21],
before presenting conclusions and perspectives in Sect. 7.

2 Related Work

In order to reduce the memory usage of storing the forward activations on a
processing device, we can identify two kinds of approaches: checkpointing or
offloading.

Checkpointing techniques consist selecting only a few activations that are
kept in memory, and then to dynamically recompute the others at runtime. This
allows to explore a tradeoff between memory usage and computational cost. The
use of checkpointing strategies has recently been advocated for DNN in several
papers [5,7,11], where it is referred as gradient checkpointing or rematerializa-
tion.

Offloading is a potentially complementary approach first proposed in [16].
In [16], the authors propose a simple and effective mechanism of memory virtu-
alization, that nevertheless introduces unnecessary idle time by enforcing some
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synchronization between data transfers and computations of later forward acti-
vations. This approach has been later improved in [1]. Nevertheless, in both
papers, the algorithmic strategies to decide which activations to offload into the
main memory are relatively straightforward. Proposed strategies consist in try-
ing to offload either all activations or only those that correspond to convolutional
layers (either all convolutions or every second one). Indeed, convolutional layers
are known to induce a large computational time with respect to their input size,
which make them good candidates to overlap offloading and processing.

Several follow-up works offer improvements over this first attempt. In order to
reduce the overhead incurred by the communications, some authors [17] recom-
mend to add compression to decrease the communication time, while others [12]
design a memory-centric architecture to help with data transfers. In [13,14],
the authors implement memory virtualization by manipulating the computa-
tional graphs and inserting special operations called swap in and swap out that
send the activations in and out of the device memory. Such an approach can
be applied to any arbitrary Computation Graph that represent neural network
training graphs. The authors of [13] improve the candidate selection and prefetch-
ing mechanisms by introducing thresholds to filter out different possibilities.
Moreover, some works try to combine offloading with other memory optimizing
techniques. Memory swapping and memory pooling are implemented together
in [21], where candidates for swapping are found by assigning priority scores
to all activations. Finally, gradient checkpointing is combined with the simple
offloading approach from [16] in [20].

As a complement to these practical approaches, in this paper we perform
the first theoretical analysis of the underlying optimization problem and present
both a complexity proof and optimal solutions to two of its relaxations.

3 Model and Complexity

3.1 Computation Model

We consider the training phase of sequential DNNs, as depicted on Fig. 1. This
training phase consists of two types of computations: forward propagations
(Fi)1≤i≤L and backward propagations (Bi)1≤i≤L. The forward step Fi requires
xi as input, and computes xi+1. The backward step Bi requires xi+1, xi and
yi+1 as inputs, and computes yi. The objective of the elementary training phase

F0 F1 · · · FL−2 FL−1 FL

B0 B1 B2 · · · BL−1 BL

x0 x1 x2 xL−2 xL−1 xL xL+1

yL+1 = 1yLyL−1y3y2y1y0

x0 x1 x2 xL−1 xLx1 x2 x3 xL−1 xL xL+1

Fig. 1. Data dependencies induced the training phase of Sequential Deep Neural Net-
works.
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is to perform the whole computation and to obtain y0 in the smallest possible
time. This computation is performed on a processing device (typically a GPU
or TPU) with limited memory MGPU. We denote uFi the time to process Fi,
and uBi the time to process Bi. As mentioned before, the training phase is very
memory intensive: since they will be needed for the backward phase, all xi values
must be stored during the forward phase, and they can only be freed once their
corresponding Bi operation has been performed.

We will use the following memory model. Each data (xi and yi) has a given
memory usage, denoted respectively by |xi| and |yi|. To perform an operation
(either Fi or Bi), it is necessary to have all inputs stored into memory, to reserve
the memory space to store the output, and to reserve space for the temporary
memory usage of the operation, denoted with exFi for Fi and exBi for Bi. For
example, running the Fi operation requires to have at least |xi| + |xi+1| + exFi
memory available.

In order to decrease memory usage, we assume that it is possible to offload
some of the forward data to another memory storage (typically the main memory
of the machine). The size of this memory is assumed to be large enough to store
all the results and thus is not a constraint; but the speed of data transfers is
limited by bandwidth β. The offloaded data can then be prefetched during the
backward phase, so that it is available when needed to perform the corresponding
backward operation. Such memory hierarchy has been considered by [1,16] as
well, i.e. there are one GPU with limited memory and one CPU with large enough
memory to store all activations of some arbitrary neural network and both are
connected with the network with the bandwidth β, which we assume is fully used
for any communications. More complicated cases such as multiple GPU and one
CPU are out of scope of this paper and they will be left for the future work.
Additionally, we assume that transfers and computations could be overlapped
while only one transfer at a time is possible. Let us point out that generally xi

needs to be stored in memory in its entirety throughout the transfer: during the
offloading, the memory is only released after the complete transfer, and during
the prefetching, the memory is reserved as soon as the transfer begins.

We can state the decision problem associated to offloading.

Problem 1 (Offloading). Consider a training phase with L operations, with pro-
cessing times uFi and uBi , data sizes |xi| and |yi|, temporary memory usage exFi
and exBi , where 0 ≤ i ≤ L. Is it possible to perform this computation on a pro-
cessing device with memory MGPU and bandwidth β between processing device
and main memory, with an execution time at most T?

3.2 Preliminary Results and Lower Bound

Proposition 1. For fixed decisions of which data to offload, and in which order
transfers should be performed, the best schedule is obtained with a no-wait policy,
where each action (computation and data transfers) is performed as early as
possible, as soon as data is available and there is enough memory.
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Given the activation sizes and the temporary memory usage, it is easy to
compute the total amount of used memory (both on the computing device and
in the additional memory) during the execution of each operation. We denote by
mFi or mBi the amount of data required to be stored on both devices to perform
Fi or Bi respectively. Let us additionally denote as Mpeak the maximum of these
values: mFi = exFi +

∑
j≤i+1 |xj |, mBi = exBi + |yi|+ |yi+1|+

∑
j≤i+1 |xj |, i.e.

Mpeak = max (max0≤i≤L mBi ,max0≤i≤L mFi) .
Since any valid schedule must process the operation which achieves the mem-

ory peak while using at most MGPU memory on the computing device, the fol-
lowing result holds.

Proposition 2. The amount of data offloaded by any valid schedule is at least
Mpeak − MGPU.

Since any valid schedule must perform all computations, and must transfer
at least this amount of data twice (for offloading and prefetching), the following
lower bound on the optimal makespan holds true.

Proposition 3. The value LB = max(
∑

i uFi + uBi , 2
Mpeak−MGPU

β ) is a lower
bound on the optimal makespan.

3.3 Complexity Results

Theorem 1. Problem 1 is strongly NP-complete.

Proof. Problem1 clearly belongs to NP: given the start time of all forward and
backward operations, and the set of offloaded data with the corresponding start
time of transfers, checking that the schedule satisfies all constraints can be done
in linear time.

We prove that this problem is strongly NP-hard and therefore strongly NP-
complete by a reduction from the 3-partition problem: given a set of integers
{u0, u2, . . . , u3m−1} such that

∑
i ui = mV , is it possible to partition it into m

parts {S1, . . . , Sm} so that for any j ≤ m, |Sj | = 3 and
∑

i∈Sj
ui = V . This

problem is known to be NP-complete in the strong sense. Given an instance
of 3-partition, we consider the following instance of Problem1, depicted on the
Figure below:

– L = 5m, β = V , MGPU = mV , T = 2m;
– uFi = 0 and |xi| = ui for 1 ≤ i < 3m;
– uFi = 1 and |xi| = 0 for i = 3m+ 2k, 0 ≤ k < m;
– uFi = 0 and |xi| = V for i = 3m+ 2k + 1, 0 ≤ k < m;
– uBi = 0 and |yi| = 0 for all i, except uB3m = m.

F0 F1
· · ·

F3m−1

1

F3m F3m+1
· · · 1

F5m−2 F5m−1

B0 B1

· · ·
B3m−1

m

B3m

B3m+1

· · ·
B5m−2 B5m−1

u1 u2 u3 u3m 0 0 V 0 V 0

0000000000

u1 u2 u3 u3m
0 0 V 0 Vu2 u3 0 0 V V 0
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We claim that this instance can be scheduled in time T = 2m if and only if
the 3-partition instance is positive.

Let us first assume that there exists a solution to the 3-partition instance,
i.e. sets (Sj)1≤j≤m such that

∑
i∈Sj

ui = V . We can build a schedule which
starts F3m+2k at time k for 0 ≤ k < m, and executes B3m from time m to
time 2m. At time 0, before the execution of F3m, the memory usage is exactly
mV =

∑
i ui. During the execution of F3m+2k, activations xi for i ∈ Sk are

transferred. Since β = V , this takes time exactly 1. The memory used at the end
of F3m+2k is thus (m − 1)V , which allows to immediately start F3m+2k+1. At
the end of the forward phase, the memory is filled with m activations of size V .
At the beginning of B3m, the memory is empty: all activations of size ui can be
prefetched during the execution of B3m, allowing to finish the backward phase.
This schedule induces no idle time, and finishes in time exactly T = 2m.

Let us now assume that there exists a valid schedule of duration T = 2m,
i.e. without any idle time on the processing device. For j < m, let us define
the set Sj as the indices of the activations whose transfers are included in the
execution of F3m+2j . Since F3m+1 starts immediately after the end of F3m, and
since memory is only released once the transfer has been completed, the amount
of data sent during F3m is at least V . Since β = V and uF3m = 1, the amount of
data is exactly V , thus

∑
i∈S0

ui = V . The same argument applies for all j < m,
which shows that the sets Sj are a valid solution for the 3-partition instance,
and completes the proof. %&

From the proof of Theorem1 follows that even when we know which activa-
tions should be offloaded, it is difficult to decide the order in which the transfers
should be done. Indeed, it is clear in the instances used in the proof that the first
3m activations need to be offloaded, but finding the optimal ordering is hard.
Because of this negative complexity result, we study two different relaxations of
Problem1 in the next sections, by relaxing the constraints stating that activa-
tions must be sent in entirety before the corresponding memory can be released.
In such scenarios, all activations can be sent as soon as they are computed, i.e.
in increasing order of their indices. This allows to compute optimal solutions
in reasonable time, and the resulting algorithms can then be used as heuristic
solutions for Problem1.

4 Fractional Relaxation

In a first relaxation, let us consider that it is possible to perform partial offload-
ing: any communication can be stopped at any time, and the data that has been
transferred up to that time can be released from memory, even if the rest of the
activation is still present on the computing device. With this model, it is possi-
ble to compute an optimal solution with a greedy algorithm. Let us first prove
results about the structure of optimal solutions, and then use that structure to
design an optimal greedy algorithm.
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Structure of Optimal Solutions. In this section, let us analyze special
eager schedules. A schedule is said eager if it offloads the first k activations
x0, x1, . . . , xk (where the last one can be partially offloaded). A schedule is said
ordered if the data is offloaded in order of increasing indices, and prefetched in
order of decreasing indices.

Lemma 1. Any valid solution S can be transformed into a eager and ordered
solution S ′ with the same makespan.

Proof. Let us denote by Moff the amount of activation data offloaded by the
schedule S, and let us consider in S the time intervals Ioff spent offloading data,
and the time intervals Ifetch spent prefetching data. Let us consider the schedule
S ′ in which all operations and data transfers are performed at the same instants
as in S, only changing which data is transferred. The first intervals of Ioff are
used to transfer x0 (since it is possible to stop any communication at any time,
using several intervals to transfer x0 is not a problem), the next ones are used
to offload x1, and so on, until the amount Moff is reached, and similarly for the
prefetched data, in reverse order. Clearly S ′ is eager and ordered.

Since the xi values become available in the forward phase by order of increas-
ing indices, and are consumed in the backward phase by order of decreasing
indices, it is clear that transfers in S ′ are valid: an activation is offloaded
only after having been produced, and in the backward phase an activation is
prefetched before being used. Furthermore, since transfers occur at the same
instants and at the same speed as in S, the memory usage of S ′ is exactly the
same as the memory usage of S at any instant. The modified S ′ schedule is thus
valid. %&

Greedy Algorithm. According to this result, we consider only eager and
ordered schedules. It is thus sufficient to find the amount of offloaded data which
results in the smallest makespan. The next result shows that it is best to offload
the least possible amount of data. The complete proof of this result can be found
in the companion paper [3].

Lemma 2. Let S and S ′ be no-wait, ordered and eager schedules which offload
a quantity of data Q and Q′ respectively, with Q < Q′. Then the makespan of S
is not larger than the makespan of S ′.

With Lemma1 and 2, since Mpeak − MGPU is a lower bound on the amount
of data that any schedule has to offload, we can characterize an optimal schedule
for this relaxed problem.

Theorem 2. For a given instance, the no-wait, eager, ordered schedule which
offloads a quantity Mpeak − MGPU of data is optimal.

By rounding up the number of offloaded activations, this result provides a
heuristic for the original integral problem, that we call Greedy. The Greedy
heuristic returns the no-wait, eager, ordered schedule which offloads (entirely)
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the first k activations, where k is the smallest index such that
∑

i≤k |xi| ≥
Mpeak − MGPU.

However, it may happen that this Greedy schedule offloads too much data
because of the rounding procedure. In the next section, we thus analyze a more
sophisticated relaxation in order to obtain a more precise algorithm.

5 Fractional Communications

Let now consider another formulation of Problem1, in which an activation must
be either entirely offloaded or not offloaded at all. However, it is still allowed to
stop a communication at any time and resume it later. In this section, we first
prove that this problem is NP-complete in the weak sense, and then propose a
pseudo-polynomial optimal algorithm based on Dynamic Programming.

5.1 Complexity

Problem 2 (Offloading with interruptions). Consider a training phase with L
operations, with processing times uFi and uBi , data sizes |xi| and |yi|, tempo-
rary memory usage exFi and exBi , where 0 ≤ i ≤ L. Is it possible to perform
this computation on a processing device with memory MGPU and bandwidth β
between the processing device and the main memory, with an execution time at
most T , if communications can be interrupted and partial?

Let us first note that Proposition 1 also holds for this problem (it is always
better to schedule with a no-wait policy). We can also state a result similar to
the one of the fully fractional case.

Lemma 3. Any valid solution S can be transformed into an ordered solution S ′

with the same makespan.

The proof is the same as the one of Lemma 1: transforming S using the
correct order provides a valid schedule. The result is weaker, because an eager
schedule which offloads the same data might not be valid for Problem2 (the last
activation might not be fully offloaded).

The next theorem shows that Problem2 is less difficult than Problem1. Its
proof is omitted here and can be found in the companion report [3].

Theorem 3. Problem 2 is NP-complete in the weak sense.

5.2 Structure of Optimal Solutions

According to Lemma3, our objective is now to find the best ordered schedule.
In this section, we derive properties of all ordered and no-wait schedules, which
will allow to obtain a dynamic programming algorithm in the next section.
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Forward and Backward Phases. Let us consider any ordered, no-wait sched-
ule S. Let MFi denote the device memory occupied at the end of Fi−1 (it should
contain all data not offloaded at this instant, plus xi which is the output of Fi−1).
Let ∆Fi denote the amount of data from x0, . . . , xi−1 that S offloads after the
end of Fi−1. If this amount is zero, let us denote by AvF the time between the
end of the last offload and the end of Fi−1, and let ∆Fi = −AvF · β. Moreover,
let us set ∆+

Fi
= max{0,∆Fi}. We aim to characterize the delay εFi between the

end of Fi−1 and the start of Fi.
Let us first remark that since S is a valid schedule, there is enough memory

to process Fi at some point, which means that ∆+
Fi

needs to be large enough,
MFi − ∆+

Fi
+ exFi + |xi+1| ≤ MGPU

If MFi + exFi + |xi+1| ≤ MGPU, then Fi can start immediately after the end
of Fi−1, and since S is no-wait, then εFi = 0. Otherwise, processing Fi can start
as soon as enough memory has been released by offloading data at rate β. This
yields εFi = MFi+exF

i +|xi+1|−MGPU

β . In summary,

εFi = max
(
0,

MFi + exFi + |xi+1| − MGPU

β

)
(1)

Let us now derive recursive equations to obtain MFi+1 and ∆Fi+1 from MFi

and ∆Fi . These equations depend on whether xi is offloaded in S.
If xi is offloaded, then the amount of data ready to be offloaded at the end of

Fi−1 is ∆+
Fi

+ |xi|. Until the end of Fi, the amount of data that can be offloaded
is at most (εFi + uFi)β. Hence we obtain

∆Fi+1 = ∆+
Fi

+ |xi| − (εFi + uFi)β (2)

MFi+1 = MFi + |xi+1| − min
(
∆+

Fi
+ |xi|, (εFi + uFi)β

)
. (3)

If xi is not offloaded, we can write similar equations, except that |xi| is not
added to the amount of data to be offloaded. This yields

∆Fi+1 = ∆Fi − (εFi + uFi)β (4)

MFi+1 = MFi + |xi+1| − min
(
∆+

Fi
, (εFi + uFi)β

)
(5)

Let us now derive similar results about the backward phase. We first modify
S to process all backward operations and perform all prefetching operations as
late as possible without changing the makespan of the schedule. We then define
MBi as the device memory occupied right before processing Bi−1 (thus it does
not take into account the output of Bi−1, which is yi−1). Let us also define ∆Bi

as the amount of data from xL, xL−1, . . . , xi) that S prefetches before starting
Bi−1, and if this amount is zero, then ∆Bi = −AvB · β, where AvB is the time
between the start of Bi−1 and the start of the first prefetch operation. Finally,
let εBi denote the delay between the end of Bi and the start of Bi−1.
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With the same reasoning as above, we obtain

εBi = max
(
0,

MBi + exFi + |xi+1|+ |yi+1| − MGPU

β

)
(6)

∆Bi+1 = |xi|+max
(
0,∆Bi − (εBi + uBi)β

)
if xi is offloaded (7)

∆Bi+1 = ∆Bi − (εBi + uBi)β otherwise (8)

Computing MBi+1 is not necessary, as one can notice that for all i,
MBi − ∆+

Bi
= |yi|+ |xi|+

∑
j<i,j not offloaded |xj |, and MFi − ∆+

Fi
= |xi|+∑

j<i,j not offloaded |xj |. Thus, MBi − ∆+
Bi

= |yi|+MFi − ∆+
Fi
, which allows to

compute MBi once all three other values are known.

Idle Time Between Phases. The connection between forward phase and
backward phase is defined through Lemma4 that shows how to compute the
idle time between them. The proof of this result is provided in [3].

Lemma 4. The idle time between phases are given in Eq. (9):

εG = max






0,
∆FL+1+∆BL+1

β ,

max{j≤L|
∑L

i=j+1 βuBi<−∆BL+1}
RB

j +MFL+1−MGPU

β −
∑L

i=j+1 uBi ,

max{j≤L|
∑L

i=j+1 βuFi<−∆FL+1}
RF

j +MBL+1−MGPU

β −
∑L

i=j+1 uFi ,

(9)

where RB
j = exBj + |yj |+ |yj−1| −

∑
i>j+1 |xi| and RF

j = exFj −
∑

i>j+1 |xi|.

5.3 Resulting Algorithm

To formalize the dynamic programming algorithm, let us define Idle(i,m,
dF , dB) as the smallest possible sum of idle times between (i) the start of the
schedule and the end of Fi−1 and (ii) the start of Bi−1 and the end of the
schedule, for all schedules S such that MFi = m, ∆Fi = dF , ∆Bi = dB .

Any schedule starts with a memory occupation of |x0|, and no idle time,
so we can define Idle(0, |x0|, 0, 0) = 0, and Idle(0,m, dF , dB) = ∞ for all
other values of m, dF , dB . In order to compute Idle(i,m, dF , dB) for all i
and all relevant values of m, dF , dB , we use hash tables Idlei indexed with
(m, dF , dB), with the understanding that if (m, dF , dB) is not stored in Idlei,
then Idle(i,m, dF , dB) = ∞. This leads to Algorithm1, where Idlei values are
used to update Idlei+1 values, with two possible cases, either with a schedule
that offloads xi, or with a schedule that does not.
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Algorithm 1. Dynamic Programming Algorithm for Fractional Communica-
tions

Idlei ← HashTable() for 0 ≤ i ≤ L
Idle0(|x0|, 0, 0) = 0
for i ∈ {0, . . . , L} do

for MFi ,∆Fi ,∆Bi ∈ Idlei do

MBi ← |yi| + ∆+
Bi

+ MFi − ∆+
Fi

if |xi+1| + max(MFi + exF
i − ∆Fi ,MBi + exB

i + |yi+1| − ∆Bi ) ≤ MGPU then

Compute εFi , εBi from equations (1) and (6)
Compute MF ,∆F ,∆B if xi is offloaded (equations (2), (3) and (7))

Idlei+1(MF ,∆F ,∆B) ← min
(
Idlei+1(MF ,∆F ,∆B), Idlei(MFi ,∆Fi ,∆Bi) + εFi + εBi

)

Compute M ′
F ,∆′

F ,∆′
B if xi is not offloaded (equations (4), (5) and (8))

Idlei+1(M
′
F ,∆′

F ,∆′
B) ← min

(
Idlei+1(M

′
F ,∆′

F ,∆′
B), Idlei(MFi ,∆Fi ,∆Bi) + εFi + εBi

)

for MF ,∆F ,∆B ∈ IdleL+1 do
Compute εG according to equation (9)
TotalIdle(MF ,∆F ,∆B ) ← IdleL+1(MF ,∆F ,∆B ) + εG

Get M∗
F ,∆∗

F ,∆∗
B which minimizes TotalIdle(MF ,∆F ,∆B )

Backtrack in IdleL+1, . . . , Idle0 to obtain optimal offload decisions

Once IdleL+1 is computed, TotalIdle can be found by adding the cor-
responding idle time εG between the forward and backward phases. Then, the
smallest value in TotalIdle is the smallest possible idle time for any ordered,
no-wait schedule. Finally, we can identify which offload decisions have led to this
idle time, and then obtain the description of the corresponding schedule.

The number of values kept in the hash table can be bounded in the following
way: MF is between 0 and MGPU, ∆F and ∆B are between −

∑
i(uFi)β and

MGPU. The number of possible values is thus O(MGPU(MGPU + uFiβ)2), and
the complexity of Algorithm1 is O(LMGPU(MGPU + uFiβ)2), which is indeed
pseudo-polynomial.

This optimal algorithm for the fractional communications model can be
turned into heuristic DynProg for the original problem. DynProg computes
the optimal set of activations for the relaxed model with Algorithm1, and out-
puts the no-wait, ordered schedule which offloads exactly these activations.

Practical Considerations. The integration of offloading in Deep Learning
frameworks is generally not completely trivial. A first solution is the one adopted
by Vdnn1 and consists in implementing an ad-hoc system to do the training by
directly managing computation operations and data transfer operations between
the main memory and the device memory. It is possible to use a solution of this
type, by directly integrating our algorithms in addition to the heuristics pro-
posed in [1]. This solution allows great flexibility and low-level management of
all data movements and allocations, but it limits the possible adoption by not
relying on classical Deep Learning frameworks. TFLMS [13] is directly built on
top of TensorFlow. The principle consists in modifying the task graph by explic-
itly integrating swap tasks (between the device memory and the main memory).
This approach is very interesting because it has a high level of integration with
1 https://github.com/shriramsb/vdnn-plus-plus/.
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TensorFlow, but on the other hand, it is only possible to specify the relative order
of the transfer tasks with respect to the computation tasks and not to perform
them at specific dates. As the scheduling of tasks is controlled by TensorFlow
itself, it is therefore not possible a priori to make just-in-time communications
and allow for a perfect overlap of computations and communications. The situa-
tion with PyTorch is also complex, because implementing an offloading solution
requires to transfer not only easily accessible tensors, but also the complete data
structure that are necessary for executing backward operations. Manipulating
this requires operating on PyTorch internals and is out of the scope of this
paper. Therefore, we rely on simulations to compare algorithms and scheduling,
and we postpone their implementation in Deep Learning frameworks until there
is an easier and more explicit support of data exchange.

As mentioned above, the dynamic program algorithm has a pseudo-
polynomial complexity, and its running time can get large for deep networks.
To keep the running time reasonable, we implement a rounding procedure (the
details are given in the research report [3]). This allows to keep all running times
below 25 s. Since this computation is performed only once for the whole training
phase, such an execution time is completely acceptable.

6 Experimental Analysis

Experimental Setting. This section presents experimental results obtained
on three different kinds of networks: ResNet, DenseNet, and Inception v3. We
have slightly modified these networks to represent them as linear chains, by
grouping each non-linear part of the graph in a virtual layer. We have obtained
the values of uF , uB , exF , exB , and the sizes of xi and yi by performing measures
on sample data on a node equipped with a Nvidia Tesla V100-PCIE GPU card
with 15.75GB of memory. We also measured the bandwidth β to transfer data
using PyTorch from the GPU to the RAM, and obtained around 12.5GB/s.

We use all available depths for ResNet (18, 34, 50, 101, 152) and DenseNet
(121, 161, 169 and 201). We use three different image sizes: small images of
shape 224 × 224, medium images of shape 500 × 500, and large images of shape
1000 × 1000. During the training phase, for higher efficiency, it is classical to
process images in batches, where several images are processed independently.
For each model and image size, we consider different batch sizes that are powers
of 2, starting from the smallest batch size that ensures a reasonable throughput.
For each case, we compute schedules with five different algorithms: Greedy
(Sect. 4), DynProg (based on Algorithm1, see Sect. 5.3), AutoSwap, TFLMS
and Vdnn, where the last three approaches are based on the state-of-the-art
methods used in the previous works. AutoSwap [21] is a score-based heuristic
which uses a weighted average of 4 priority scores to decide which activations
should be offloaded in priority. The best weight combination is obtained with
Bayesian Optimization. TFLMS [13] is a heuristic designed for general graphs
(not necessarily sequential) in high bandwidth settings, but it does not use any
profiling information and thus cannot adapt to the available memory. TFLMS
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Fig. 2. Experimental results for image size 224 and batch size 32.

is parameterized with the number of tensors to be offloaded and how many lay-
ers in advance the data should be prefetched, and we present the performance
achieved by the best configurations. In VDNN++ [1], the authors identify con-
volutional layers as having a much longer computation latency. Their approach
is to offload the input of either all convolutional layers, or of half of them. In
our implementation of Vdnn, we identify as candidates the layers for which the
ratio uFi

|xi| is above a given threshold. For all possible thresholds, we compute the
no-wait, ordered schedule which offloads all these candidates, and the one which
offloads half of them. Vdnn outputs the best schedule out of all these choices.

Representative Results. A representative selection of achieved results is
depicted in Fig. 2, where different types of network of different length are consid-
ered with a given image and batch size. For each network, we run all algorithms
with a memory limit varying from the minimum amount of memory required to
run the network, toMpeak which allows to process the network with no offloading.
In each case, we also compute the lower bound LB (Proposition 3), and the plots
show the ratio of the makespan achieved by each algorithm to the lower bound,
thus points where the ratio is 1 correspond to optimal solutions. We observe
that both Greedy and DynProg outperform the Vdnn heuristic in all cases,
especially in low memory scenarios. Once correctly parameterized, TFLMS is
able to obtain optimal makespan for the highest memory limit values. But it is
unable to delay forward computations until enough memory is available, and thus
can not adapt to low memory settings when bandwidth is scarce. AutoSwap
often produces the same solution as the Greedy algorithm (for a much higher
computational cost), but its performance depends on the random procedure of
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Bayesian Optimization and is thus very inconsistent. The DynProg approach
obtains significantly better performance than Greedy. The difference is small
in many cases, except for the DenseNet networks where DynProg is able to
consistently obtain almost optimal solutions. The spike that can be observed
on these graphs for Greedy and Vdnn correspond to the memory limit MGPU

for which both terms of the lower bound LB are almost equal (i.e., the total
execution time is very close to the time to transfer Mpeak − MGPU). Such cases
are more difficult to solve because both criteria need to be optimized carefully.

Overall, DynProg obtains much more stable performance than Vdnn and
AutoSwap, and produces solutions over a much wider range than TFLMS.
Furthermore, DynProg is able to consistently achieve a ratio below 1.2, which
means that its throughput is at least 83% of the highest possible throughput.

Fig. 3. Comparison to rematerialization for image size 224 and batch size 32, for various
bandwidth values.

Comparison to Rematerialization. An alternative to offloading is remate-
rialization [7], in which memory savings are achieved by discarding activations
and recomputing them later. In Fig. 3, we compare the throughput (in terms of
processed images per second) obtained by the offloading algorithms and by an
optimal rematerialization strategy [2]. We observe that for the bandwidth mea-
sured on our hardware, the rematerialization is significantly more interesting,
except for the higher memory limits. However, if the bandwidth is two or three
times larger, the interest of offloading becomes significant, allowing to perform
at optimal throughput over a wide range of memory limits.

More results are available in the companion paper [3].
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7 Conclusions

In this paper, we address the problem of memory usage during the training
phase of Deep Neural Networks. Previous works [1,13,14,16,20,21] advocated to
offload some of the data onto the main memory, and to prefetch them back when
needed. We propose a formal algorithmic model of the corresponding scheduling
problem, where the goal is to identify which activations should be offloaded
so as to minimize the total execution time. We prove that this problem is NP-
Complete in the strong sense, and we propose two heuristics based on relaxations
of the problem. The Greedy heuristic always offloads the first activations in
the network. This very simple technique nevertheless achieves good results in
our experimental evaluation. The DynProg algorithm is a more sophisticated
approach which takes into account the fact that activations cannot be partially
transferred which allowed to obtain mostly better solutions. In any case, both
algorithms provide significant improvements over the previous approaches.

A promising research direction is the validation through real experiments,
that would allow to confirm the relevance of the assumptions made in the model.
Since our theoretical analysis shows that being able to offload activations par-
tially makes the problem much easier, it could be very interesting to assess in
which cases this could be technically feasible. Finally, this offloading technique
is complementary of the checkpointing approach: some activations can be trans-
ferred to the main memory while others can be recomputed. Solving the mixed
checkpointing and offloading corresponding algorithmic problem might be chal-
lenging, but would certainly yield a significant improvement for training large
and deep models.
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