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Abstract. The Tucker tensor decomposition is a natural extension of the singular value decom-
position (SVD) to multiway data. We propose to accelerate Tucker tensor decomposition algorithms
by using randomization and parallelization. We present two algorithms that scale to large data and
many processors, significantly reduce both computation and communication cost compared to pre-
vious deterministic and randomized approaches, and obtain nearly the same approximation errors.
The key idea in our algorithms is to perform randomized sketches with Kronecker-structured random
matrices, which reduces computation compared to unstructured matrices and can be implemented
using a fundamental tensor computational kernel. We provide probabilistic error analysis of our
algorithms and implement a new parallel algorithm for the structured randomized sketch. Our ex-
perimental results demonstrate that our combination of randomization and parallelization achieves
accurate Tucker decompositions much faster than alternative approaches. We observe up to a 16×
speedup over the fastest deterministic parallel implementation on 3D simulation data.

1. Introduction. Tucker decompositions are low-rank tensor approximations
capable of approximating multidimensional data with large compression rates while
maintaining high accuracy. Large scale multidimensional data arises from many ap-
plications such as simulations of partial differential equations, data mining, facial
recognition, and imaging. Processing these data requires computationally efficient
methods. Randomized algorithms have been used to efficiently compute Tucker de-
compositions in works such as [1, 4, 9, 11, 25, 27, 30, 33], but the growing size of data
is outpacing even randomized algorithms. Scaling these methods to handle large data
calls for efficient parallelization. Many high-performance implementations of deter-
ministic algorithms have been developed for Tucker decompositions [3, 7, 21, 12, 24].
We develop both sequential and parallel randomized algorithms that efficiently com-
pute Tucker decompositions of large-scale multidimensional data by reducing both
computation and communication compared to previous work.

As we review in § 2, there are two dominant computational kernels to computing
a Tucker decomposition: computing matrix singular value decompositions (SVD) and
computing tensor-times-matrix (TTM) products. For the deterministic algorithms
HOSVD [14] (Alg. 2.1) and STHOSVD [29] (Alg. 2.2), computing the SVD is the
typical bottleneck, and various methods trade off accuracy for reduced computational
complexity. Our goal is to reduce the complexity of the SVD computation via ran-
domization and remove it as the dominant cost without sacrificing too much accuracy.
Existing randomized Tucker approaches, discussed in § 3, apply low-rank matrix ap-
proximation algorithms in place of matrix SVDs. These matrix algorithms include
randomized range finder [17] (RRF, see Alg. 2.3), which computes part of the low-rank
approximation and involves a slight overestimate of the target rank, or randomized
SVD [17] (RandSVD, see Alg. 2.4), which involves a second pass over the data to
obtain the final approximation with the exact target rank.

We propose two randomized algorithms in § 4, one based on HOSVD and one
based on STHOSVD, which have comparable accuracy and running time. In our
algorithms, we use the RRF approach with Kronecker-structured random matrices,
which reduces the computational complexity of the sketch compared to previous ran-
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domized approaches. As a significant added practical benefit, the Kronecker structure
reduces the amount of random number generation compared to unstructured random
matrices such as Gaussian. Furthermore, we propose a deterministic truncation of
the resulting core (with overestimated ranks) in order to achieve the exact target
ranks, obtaining the same effect as RandSVD-based approaches at much lower cost.
We show that our HOSVD-based algorithm can be as computationally efficient as
our STHOSVD-based algorithm by employing a dimension tree optimization to avoid
recomputation across sketches using memoization.

To accompany our algorithms, we develop probabilistic error guarantees in § 5
for a randomized matrix algorithm using a Kronecker product of random matrices.
We use the matrix results to obtain theoretical guarantees for our Tucker algorithms.
Our bounds differ from previous results by accounting for the Kronecker structure
and rank truncation in our algorithms and by reducing the probability of failure and
amplification factors.

In § 6, we describe the parallelization of our proposed algorithms for distributed
memory using the TuckerMPI library [3], allowing us to scale the algorithms to large
datasets that cannot be processed on a single server. While previous work has com-
bined randomization and parallelization, our implementation is the first to parallelize
the randomized sketch, which significantly reduces the computational cost. Moreover,
in exploiting the Kronecker structure of our sketch, we implement a new parallel al-
gorithm that communicates less data than the algorithm used by TuckerMPI and in
fact minimizes interprocessor communication for the computation [2].

Our experimental results are presented in § 7. We validate the error guarantees
of § 5 and show empirically that our structured random matrices are just as accurate
as standard Gaussian random matrices. Using synthetic data as well as two large
simulation datasets, we demonstrate that our parallel randomized algorithms given
in § 6 scale well to thousands of cores and outperform alternative deterministic and
randomized algorithms, achieving speedups of up to 16× over the state-of-the-art
implementation of the best deterministic algorithm.

2. Background. We first review the relevant background on tensors and ran-
domized algorithms for matrices. For more details on tensors, see [22], and for more
details on randomized algorithms, see [17].

2.1. Tensor notation and operations. A tensor X ∈ Rn1×n2×···×nd is a d-way
array. We can unfold a d-mode tensor along each of its modes, or dimensions; the
mode-j unfolding, denoted X(j), is a matrix with columns formed as the mode-j fibers
of the tensor. Let ∥·∥ denote the tensor norm, which generalizes the matrix Frobenius
norm. Since the following products will be frequently used to describe the sizes and
ranks of a tensor, we define the following notations: n⊛ =

∏d
k=1 nk, n4

i =
∏i−1

k=1 nk,

n5
i =

∏d
k=i+1 nk, n

⊘
i =

∏
k ̸=i nk.

One key operation for tensors is the tensor-times-matrix product, or TTM. A
tensor X ∈ Rn1×n2×···×nd is multiplied along mode j by a matrix A ∈ Rm×nj , denoted
by X×j A, to obtain a tensor Y ∈ Rn1×···×nj−1×m×nj+1×···×nd . This product can also
be expressed in terms of its mode-j unfolding as Y(j) = AX(j). We can also multiply
a tensor X ∈ Rn1×···×nd by up to d matrices Aj ∈ Rmj×nj , j = 1, . . . , d, across
distinct modes to obtain Y = X×1 A1 ×2 A2 × · · · ×d Ad ∈ Rm1×···×md . We call this
product a multi-TTM; it is also known as a multilinear multiplication. If unfolded
along mode j, we have Y(j) = AjX(j) (Ad ⊗ · · · ⊗Aj+1 ⊗Aj−1 ⊗ · · · ⊗A1)

⊤
, where

⊗ is the matrix Kronecker product.
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2.2. Tucker Decomposition. The Tucker decomposition of a given tensor X ∈
Rn1×···×nd of multirank r = (r1, . . . , rd), where rj = rank(X(j)) for each j, represents
X as the product of a core tensor G ∈ Rr1×···×rd and d factor matrices Uj ∈ Rnj×rj

such that X = G×1 U1 × · · · ×d Ud. We can also obtain a low-rank approximation to
X in the Tucker form by taking the target rank (r1, . . . , rd), or size of the core tensor
G, to be less than the ranks of the unfoldings in each mode.

Higher-Order SVD (HOSVD) and Sequentially Truncated HOSVD. Two algo-
rithms that compute low-rank Tucker decompositions of tensors are the higher-order
SVD (HOSVD) [14] and sequentially truncated HOSVD (STHOSVD) [29]. The
HOSVD algorithm forms each factor matrix Uj from the first rj left singular vectors
of the mode unfolding X(j), and once all the factor matrices are computed, computes

the core tensor as G = X×1 U
⊤
1 × · · · ×d U

⊤
d (see Alg. 2.1).

Algorithm 2.1 HOSVD [14]

1: function [G, {Uj}] = HOSVD(X, r)
2: for j = 1 : d do
3: Uj = first rj left sing. vecs. of X(j)

4: end for
5: G = X×1 U⊤

1 × · · · ×d U⊤
d

6: end function

Algorithm 2.2 STHOSVD [29]

1: function [G, {Uj}] = STHOSVD(X, r)
2: G = X

3: for j = 1 : d do
4: Uj = first rj left singular vecs. of G(j)

5: G = G×j U⊤
j

6: end for
7: end function

The STHOSVD algorithm is similar to HOSVD, but instead of handling all modes
independently, it processes the modes in a predetermined sequence. After the first
factor matrix is computed from the first rj left singular vectors of X(j), we truncate
in that mode by computing a partially truncated core tensor via a TTM with the
factor matrix, G ×j U

⊤
j . We then use the partially truncated core G for the next

mode instead of the full tensor X, as shown in Alg. 2.2.

2.3. Randomized Matrix Algorithms. The randomized range finder algo-
rithm, made popular by [17] and shown in Alg. 2.3, efficiently computes a low-rank
representation of a matrix M ∈ Rm×n. Given a target rank r and oversampling pa-
rameter p, we multiply M by a random matrix Ω ∈ Rn×ℓ with ℓ = r + p such that
ℓ < m, to form Y ∈ Rm×ℓ, a matrix made up of random linear combinations of the
columns of M. We then compute a thin QR decomposition of Y to obtain a matrix
Q ∈ Rm×ℓ whose range is a good estimate of the range of M. Projecting M onto
the range of Q gives us the low-rank approximation M ≈ QQ⊤M. We can choose
any random distribution for random matrix Ω. In this paper, we will consider both
subsampled random Hadamard transform (SRHT) and standard Gaussian matrices.

Note that the resulting approximation from Alg. 2.3 is actually rank-ℓ. If we
seek a rank-r approximation, further truncation is necessary. One way of truncating
is to take a thin SVD of Q⊤M, which is the process taken in the randomized SVD
algorithm in [17], reproduced in Alg. 2.4. We will adapt this truncation method in
the algorithms developed in later sections.

Algorithm 2.3 Randomized Range
Finder [17]

1: function Q = RandRangeFinder(M,Ω)
2: Y = MΩ
3: Compute thin QR Y = QR
4: end function

Algorithm 2.4 Randomized SVD [17]

1: function [U,Σ,V] = RandSVD(M, r,Ω)
2: Q = RandRangeFinder(M,Ω)
3: B = Q⊤M
4: Compute thin SVD B = ÛΣV⊤

5: U = QÛ(:, 1 : r)
6: Truncate Σ = (1 : r, 1 : r), V = V(:, 1 : r)
7: end function

3



3. Related Work. Our work builds on three different categories of previous
work, namely randomized algorithms for Tucker decompositions, probabilistic analysis
of randomized algorithms, and parallel algorithms for tensor computations.

Randomized Algorithms. There has been much previous work on randomized algo-
rithms for Tucker decompositions; a good survey of this work can be found in [1]. The
basic algorithms for randomized HOSVD and randomized STHOSVD are proposed
in [33], while later work improves on the algorithms in various ways. One important
distinction among randomized algorithms is the rank of the output approximation.
In [30, 33], the approximation has rank ℓ = r + p as the randomized range finder
(Alg. 2.3) is used without additional truncation. Other algorithms, such as those
presented in [9, 27] do not oversample at all, limiting the potential accuracy of their
methods. In [11], the authors use the randomized range finder, but truncate by only
taking the first rj columns of each factor matrix. The randomized SVD algorithm
(Alg. 2.4) can be applied instead to both oversample and more accurately obtain the
desired rank-r approximation, which is done in [4, 25]. Our approach is most similar
to the randomized SVD approach, but we apply it in a holistic manner, as discussed
in § 4.1.

Another common improvement to the basic randomized algorithms comes from
exploiting structure in the random matrices used to reduce storage and/or computa-
tional costs, as well as the number of random entries generated. Khatri-Rao products
of random matrices are used in [9, 27], compact random matrices are employed in [4],
and Kronecker products of random matrices are used in [10, 11]. Our work is most sim-
ilar to [11] as we also employ Kronecker products, but our algorithms improve upon
those in [11] by truncating to the desired target rank in a more accurate manner.
Kronecker product structure has also been exploited in other tensor decompositions
besides Tucker decompositions: in [5, 19], Kronecker products of random matrices are
used to accelerate algorithms for CP decompositions; while in [13], Kronecker product
structure was exploited in the context of the tensor-train decomposition. We also dis-
cuss how to implement our algorithms on distributed systems and provide improved
probabilistic analysis.

Error Analysis. To accompany the discussed randomized algorithms, other work
has developed probabilistic error analysis. Analysis for the standard version of ran-
domized HOSVD is presented in [16, 25], and for the standard randomized STHOSVD
algorithm in [9, 25] for Khatri-Rao products of Gaussian matrices and dense Gaussian
random matrices, respectively. Previous error analysis has been done for a random-
ized STHOSVD algorithm employing Kronecker products of subsampled randomized
Fourier transform (SRFT) matrices in [11], but we make several improvements on this
work. Our error bound, for our algorithms with Kronecker products of the real-valued
equivalent of SRFTs, i.e., subsampled randomized Hadamard transform (SRHT) ma-
trices, has an improved error constant and a smaller probability of failure.

Parallel Algorithms. Our parallel algorithms and implementation, described in
§ 6, are built upon the foundation of TuckerMPI [3] and its improvements [24]. Tuck-
erMPI is a C++/MPI library that implements the STHOSVD algorithm to compute
Tucker decompositions of large dense tensors that are distributed across machines.
It implements many other utilities such as file I/O and subroutines such as parallel
TTM, that we use in our algorithms and experiments. Other parallel implementations
of Tucker algorithms have been developed for both dense [7] and sparse [21] tensors.
The most similar work to ours combines parallelism and randomization to compute
Tucker decompositions of dense tensors [12]. The approach taken by Choi, Liu, and
Chakaravarthy [12] is to employ STHOSVD (Alg. 2.2) and compute the SVD of G(j)
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by computing its Gram matrix in parallel and then sequentially applying randomized
SVD (Alg. 2.4) to the Gram matrix. Our approach differs in that we parallelize the
randomized algorithm and avoid the Gram matrix computation; we provide a more
detailed comparison in § 6.4.

We propose a novel implementation of a parallel algorithm for the Multi-TTM
computation in § 6.1. Communication lower bounds for this computation and theoret-
ical algorithms that achieve those lower bounds are presented in [2]. The Multi-TTM
algorithm that we present in this paper can be seen as a specialization of [2, Alg. 8.1],
but our implementation is novel. We also highlight previous optimizations of tensor
computations using dimension trees, a memoization technique. First introduced in
[26] in the context of computing gradients of the CP decomposition optimization prob-
lem, dimension trees have also been used for Tucker decompositions. For example,
the Higher-Order Orthogonal Iteration (e.g., [15]) benefits from storing and reusing
intermediate quantities across tensor modes as demonstrated in [20]. We use the di-
mension tree approach in a different context in one of our randomized algorithms;
this process is described in § 4.4.

4. Sequential Algorithms. We present our novel sequential algorithms before
discussing how they may be implemented in parallel. There are several different
variations of algorithms we will present, and we provide a hierarchy diagram for how
they relate in Figure 1. The first optimizations we show, using sequential truncation
and randomization, have been developed in previous work. We then progress to
using a Kronecker product of random matrices within the randomized algorithms,
and then finally reusing Kronecker factors in the HOSVD case. The two most efficient
algorithms we present are in the leftmost boxes of the two main subtrees: randomized
STHOSVD with Kronecker products (Alg. 4.3) and randomized HOSVD with reused
Kronecker factors (Alg. 4.4).

HOSVD
(Alg. 2.1)

STHOSVD
(Alg. 2.2)

rSTHOSVD
(Alg. 4.2)

rSTHKron
(Alg. 4.3)

rHOSVD
(Alg. 4.1)

rHKron
(Alg. A.1)

rHKron-re
(Alg. 4.4)
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Fig. 1: Hierarchy of algorithms

In all the algorithms presented in this section, we employ a holistic truncation ap-
proach. Given a tensor X, target rank r = (r1, . . . , rd), and oversampling parameter p
and letting ℓj = rj+p for j = 1, . . . , d, we first apply the randomized range finder algo-

rithm (Alg. 2.3) to each mode unfolding, and obtain an initial core Ĝ ∈ Rℓ1×···×ℓd . We
then apply the truncation phase of Alg. 2.4 by computing a deterministic STHOSVD
of Ĝ such that Ĝ ≈ G ×1 V1 × · · · ×d Vd. The rank-r representation of X is then
X ≈ G×1 Û1V1 × · · · ×d ÛdVd.
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4.1. Randomized HOSVD/STHOSVD. The first algorithms we present are
the basic form of randomized algorithms on which we improve throughout the paper.
Algs. 4.1 and 4.2 are similar to other randomized projection algorithms for Tucker
decompositions found in [1, 25] except for the truncation approach. Instead of directly
applying the randomized SVD algorithm (Alg. 2.4) to each mode unfolding, we take
the holistic approach described above. We can use this technique both with HOSVD,
shown in Alg. 4.1, and STHOSVD, shown in Alg. 4.2.

Algorithm 4.1 Randomized HOSVD

1: function [G, {Uj}] = rHOSVD(X, r, p)

2: for j = 1 : d do

3: Draw Ω ∈ Rn⊘
j ×ℓj

4: Ûj = RandRangeFinder(X(j),Ω)
5: end for
6: Ĝ = X×1 Û

⊤
1 × · · · ×d Û

⊤
d

7: [G, {Vj}] = STHOSVD(Ĝ, r)

8: Uj = ÛjVj for j = 1, . . . , d
9: end function

Algorithm 4.2 Randomized STHOSVD

1: function [G, {Uj}] = rSTHOSVD(X, r, p)

2: Ĝ = X

3: for j = 1 : d do

4: Draw Ω ∈ Rr4
j n5

j ×ℓj

5: Ûj = RandRangeFinder(Ĝ(j),Ω)

6: Ĝ = Ĝ×j Û
⊤
j

7: end for
8: [G, {Vj}] = STHOSVD(Ĝ, r)

9: Uj = ÛjVj for j = 1, . . . , d
10: end function

4.2. Randomized HOSVD/STHOSVD with Kronecker product. Our
main algorithm combines the HOSVD/STHOSVD algorithms with a special case
of the randomized range finder algorithm used on each mode unfolding. Within
the randomized range finder, we will represent the random matrix Ω as a Kron-
ecker product of random matrices each with a small number of columns instead
of a single large Ω. This allows us both to employ a Multi-TTM operation in-
stead of matrix multiplication, reducing the computational complexity, and to ex-
ploit properties of tall-and-skinny matrices in our parallel algorithms. Specifically, for
a tensor X ∈ Rn1×···×nd , rank r = (r1, . . . , rd), and oversampling parameter p with

ℓj = rj+p, define Ωj ∈ Rn⊘
j ×ℓj as Ωj = (Φj,d ⊗ · · · ⊗Φj,j+1 ⊗Φj,j−1 ⊗ · · · ⊗Φj,1)

T
,

with Φj,k ∈ Rsj,k×nk a random matrix from some distribution (e.g. Gaussian, SRHT,
etc.), and S ∈ Nd×d a matrix of subranks. We define S to have entries sj,k the k-th
subrank for mode j where k ̸= j, and diagonal entries sj,j = 1 for j = 1, . . . , d, such

that the row products
∏d

k=1 sj,k = ℓj , for j = 1, . . . , d. We summarize the steps for
our algorithm in STHOSVD form in Alg. 4.3 (rSTHKron), and include an HOSVD
version in Alg. A.1. Note that Lines 5 to 7 in Alg. 4.3 consist of applying random-
ized range finder to the current mode unfolding using the Kronecker product as our
random matrix.

Algorithm 4.3 Randomized STHOSVD with Kronecker product

1: function [G, {Uj}] = rSTHKron(X, r, p)

2: Ĝ = X

3: Compute matrix of subranks S
4: for j = 1 : d do
5: Draw d− 1 random matrices Φj,k ∈ Rsj,k×ℓk for k < j and Φj,k ∈ Rsj,k×nk for k > j

6: Y← Ĝ×1 Φj,1 × · · · ×j−1 Φj,j−1 ×j+1 Φj,j+1 × · · · ×d Φj,d

7: Compute thin QR Y(j) = ÛjR

8: Ĝ = Ĝ×j Û
T
j

9: end for
10: [G, {Vj}] = STHOSVD(Ĝ, r)

11: Uj = ÛjVj for j = 1, . . . , d
12: end function
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Choosing subranks. The restriction on the subranks S is that
∏d

k ̸=j sj,k = ℓj =
rj+p for each row j = 1, . . . d. In practice, we can actually choose the subranks so that∏d

k ̸=j sj,k ≥ ℓj . Satisfying this looser condition means we are essentially increasing
the oversampling we are already doing through parameter p. This frees us to use
heuristics to choose the subranks. We choose each row of S to be composed of d− 1
integer factors of ℓj . In the case that ℓj does not have exactly d−1 integer factors, we
adjust the oversampling parameter until we can obtain the correct number of factors.

4.3. Randomized HOSVD with Kronecker Factor Reuse. An additional
adaption we make to reduce the number of random values generated and computation
is to reuse the components of the Kronecker product Ω. Instead of generating d − 1
random matrices for each mode as in Alg. 4.3, we generate d random matrices {Φj}
once, and use different combinations of d − 1 of those same matrices in each mode.
This approach is summarized in Alg. 4.4. One benefit of this approach is that we
generate significantly fewer random entries. We can also, as will be addressed in § 6,
implement dimension trees to reduce computational cost. This variation only works
for the HOSVD approach as the size of each Φj remains the same, while it would
change after each mode in an STHOSVD approach.

Algorithm 4.4 Randomized HOSVD with Kronecker product re-using factors

1: function [G, {Uj}] = rHKron(X, r, p)
2: Compute subranks s
3: Draw d random matrices Φk ∈ Rsk×nk for k = 1, . . . , d
4: for j = 1 : d do
5: Y← X×1 Φ1 × · · · ×j−1 Φj−1 ×j+1 Φj+1 × · · · ×d Φd

6: Compute thin QR Y(j) = UjR
7: end for
8: Ĝ = X×1 Û

⊤
1 × · · · ×d Û

⊤
d

9: [G, {Vj}] = STHOSVD(Ĝ, r)

10: Uj = ÛjVj for j = 1, . . . , d
11: end function

Choosing subranks. Note that in this case we compute only one vector of subranks
s ∈ Nd, instead of a matrix as in Alg. 4.3. We compute these subranks heuristically
as well, and in this case in a straightforward manner, deriving the formula si =

⌈(
∏d

j=1 ℓj)
1

d−1 /ℓi⌉, from the conditions s ∈ Nd and
∏d−1

k=1 sk ≥ ℓj for j = 1, . . . , d.
This formula, while more straightforward, is more constricting than the method we
use to compute subranks for Alg. 4.3 because sjℓj is approximately fixed for each
mode j. This can create problems when computing with tensors with skewed modes
and ranks, so we recommend not reusing Kronecker factors in these cases.

4.4. Dimension Tree Optimization. In Line 5 of Alg. 4.4, we perform a multi-
TTM to compute the sketch tensor Y for each mode, resulting in d multi-TTM prod-
ucts. Notice, however, that the d−1 random matrices that we use in each multi-TTM
are drawn from the same set of d random matrices {Φ1, . . . ,Φd}. Thus a significant
number of computations in each multi-TTM are repeated and can be reused. The di-
mension tree concept, which has been employed to reduce computational complexity
in other algorithms [7, 20], also applies in this situation. In our implementation, we
use a binary tree with d leaf nodes for a d-way tensor. For example, given a 4-way
tensor X and four random matrices {Φ1,Φ2,Φ3,Φ4}, the 4 multi-TTM operations
that would be carried out without a dimension tree are shown in the four leaf nodes of
Figure 2. The dimension tree provides an efficient way to perform the computations
shared between each pair of adjacent leaf nodes and store the results in memory to
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reduce computation. For a d-way tensor X ∈ Rn×···×n and d random matrices {Φj}
each of size r × n, the cost of using dimension trees to sketch every unfolding of X is
shown in Table 1. When r ≪ n, both costs are approximated by the first terms in the
summations. As d increases, the cost reduction that comes from using a dimension
tree increases proportionally to d/2.

X

X×3 Φ3 ×4 Φ4 X×1 Φ1 ×2 Φ2

X×3 Φ3 ×4 Φ4 ×2 Φ2 X×3 Φ3 ×4 Φ4 ×1 Φ1 X×1 Φ1 ×2 Φ2 ×4 Φ4 X×1 Φ1 ×2 Φ2 ×3 Φ3

Fig. 2: Dimension tree for computing the sketches of a 4-way tensor X in Alg. 4.4.

with dimTree without dimTree
d = 3 2(2rn3 + 3r2n2) 2(3rn3 + 3r2n2)
d = 4 2(2rn4 + 2r2n3 + 4r3n2) 2(4rn4 + 4r2n3 + 4r3n2)
d = 5 2(2rn5 + 2r2n4 + 3r3n3 + 5r4n2) 2(5rn5 + 5r2n4 + 5r3n3 + 5r4n2)

Table 1: Complexity reduction examples that can be achieved using dimension trees.

4.5. Computational Complexity. To analyze the computational cost of our
algorithms, we consider the notationally simpler case with a d-mode tensor X ∈
Rn×···×n, target rank (r, . . . , r), and oversampling parameter p, letting ℓ = r+ p. We
will also let the subranks {sj,k} and {sk} all be the same value, which we denote as
s = ℓd−1. Assume s < r ≪ n.

There are two dominant costs for each algorithm presented: computing an SVD
for each mode, and forming the core tensor via a multi-TTM or a series of TTMs
(in the STHOSVD case). We show the leading terms of both dominant steps for the
standard algorithms, Algs. 2.1 and 2.2, and compare to those for Algs. 4.1 to 4.4 in
Table 2. More details on the cost analysis for Algs. 2.1 and 2.2 can be found in [29],
while more details on the analysis for Alg. 4.1 and Alg. 4.2 can be found in [25]. Based
on the terms shown in Table 2, we advocate the use of either Alg. 4.3 or Alg. 4.4, and
we show more detailed analysis on these two algorithms in Appendix B.

Leading term
Algorithm SVD TTM
HOSVD (2.1) dnd+1 2rnd

STHOSVD (2.2) nd+1 2rnd

rHOSVD (4.1) 2dℓnd 2ℓnd

rSTHOSVD (4.2) 2ℓnd 2ℓnd

rSTHOSVDkron (4.3) 2ℓ
1

d−1nd 2ℓnd

rHOSVDkronreuse (4.4) 4ℓ
1

d−1nd 2ℓnd

Table 2: Computational Cost

4.6. Comparison with Previous Work. We compare our sequential algo-
rithms with previous approaches, in particular those based on the use of randomized
SVD [25] and Kronecker-structured random matrices [11]. As summarized in [1],
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randomization can be used in multiple ways to compute Tucker approximations of
tensors. The most similar approaches to Algs. 4.1 and 4.2 are [25, Algs. 3.1 and
3.2]. These algorithms replace the deterministic SVD within Algs. 2.1 and 2.2 with
randomized SVD (Alg. 2.4). The randomized SVD requires computing the thin SVD
of the projection of the approximate column space; it increases the computational
cost compared to randomized range finder by a constant factor greater than 2. Be-
cause Algs. 4.1 and 4.2 use randomized range finder (Alg. 2.3), they involve only one
operation with the input (the random sketch) at the expense of working with the
oversampled rank ℓ rather than the target rank r until the final core truncation step.
The oversampled ranks are only slightly larger than the target ranks, so Algs. 4.1
and 4.2 are computationally cheaper than [25, Algs. 3.1 and 3.2].

The Kronecker-structured random sketches of Algs. 4.3 and 4.4 are similar to
[11, Alg. 3.1]. This algorithm uses a Sampled Random Fourier Transform to sketch
each mode’s matricization within STHOSVD. Besides using a complex-valued random
matrix, the key difference with Alg. 4.3 is the truncation strategy: after computing
the thin QR decomposition of the sketched matrix with ℓ columns, all but the first r
columns are truncated. As we demonstrate in § 7.1, our truncation strategy using a
deterministic STHOSVD of the core tensor computes a more accurate approximation.

To the best of our knowledge, reusing Kronecker factors and exploiting the possi-
ble memoization of temporary quantities as presented in § 4.3 and 4.4 have not been
considered before.

5. Error Analysis. We now present error guarantees for Algs. 4.3 and 4.4.
Let T = [G;U1, . . . ,Ud] be the approximation from either algorithm, and T̂ =

[Ĝ; Û1, . . . , Ûd] be the intermediate rank-ℓ approximation. The overall form of the
error is

εtotal = ∥X− T∥ ≤ ∥X− T̂∥+ ∥T̂ − T∥ = εrand + εcore,

where εrand represents the error from forming the rank-ℓ approximation, and εcore
represents the error in truncating the approximation to rank r. The component εcore
is equivalent to the error in computing the STHOSVD of Ĝ, which we can see from

εcore = ∥
(
Ĝ− G×1 V1 × · · · ×d Vd

)
×1 Û1×· · ·×d Ûd∥ = ∥Ĝ−G×1V1×· · ·×dVd∥,

where the second equality follows from the orthonormality of {Ûj}. We can then

apply the error bound for STHOSVD [29, Theorem 6.5] to initial core Ĝ, i.e, ε2core ≤∑d
j=1

∑ℓj
i=rj+1 σ

2
i

(
Ĝ(j)

)
, where σi(A) denotes the ith singular value of A.

Then, as Ĝ is a random quantity, we need to relate the singular values of Ĝ(j)

to the singular values of X(j) to get a deterministic upper bound. Because matrices

{Ûj} are orthonormal, the mode-wise singular values of Ĝ cannot be larger than those
of X. A formal proof of this fact can be found in Appendix C. Thus, we have

(5.1) ε2core ≤
d∑

j=1

ℓj∑
i=rj+1

σ2
i

(
X(j)

)
.

The rest of this section considers the component εrand. Starting with an error
bound for randomized range finder (Alg. 2.3) using a Kronecker product of SRHT
matrices, we extend the results to an error bound for our HOSVD-type algorithm
(Alg. 4.4) and discuss how to adapt the proof for our STHOSVD-type algorithm
(Alg. 4.3).
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5.1. Matrix Bound.
Random Matrix. Let n =

∏q
j=1 nj and ℓ =

∏q
j=1 sj . We will consider a Kronecker

product of SRHT matrices of the form

(5.2) Ω = D(H1 ⊗H2 ⊗ · · · ⊗Hq) ∈ Rn×ℓ,

whereD ∈ Rn×n is a diagonal matrix with i.i.d. entries from the Rademacher distribu-
tion, i.e. either 1 or −1 with equal probability, and for each j = 1, . . . , q, Hj ∈ Rnj×sj

is formed from sj randomly sampled columns of an nj × nj Walsh-Hadamard ma-
trix scaled by 1√

nj
. Due to this scaling, Ω is orthonormal. Also note that the {Hj}

matrices are generated independently.
Notation. We now introduce the setup and notation for our main theorem. Fol-

lowing the notation of [17], let X = UΣV⊤ be the SVD of matrix X ∈ Rm×n with
m ≤ n. Fix target rank r, and partition the SVD as

(5.3) X = U

[
Σ1

Σ2

] [
V⊤

1

V⊤
2

]
,

with Σ1 ∈ Rr×r,Σ2 ∈ R(m−r)×(m−r),V1 ∈ Rn×r, and V2 ∈ Rn×(m−r) such that V1

and V2 have orthonormal columns. Now let Ω ∈ Rn×ℓ be the random matrix defined
in (5.2), and define

(5.4) Ω1 = V⊤
1 Ω, Ω2 = V⊤

2 Ω.

We are interested in bounding the largest singular values of Ω†
1 and Ω2. We will

use the orthonormality of Ω2 to bound its largest singular values, but the argument
is more complicated for Ω1. Here we will adapt the approach in [31], allowing for the
application to a Kronecker product of independent SRHT matrices and making other
minor improvements. This bound is stated in Lemma 5.1, which we will then use to
prove our approximation error bound. We prove Lemma 5.1 in Appendix D.

Lemma 5.1. Let Ω1 ∈ Rr×ℓ as defined in (5.4), with Ω ∈ Rn×ℓ the Kronecker
product of q SRHT matrices as defined in (5.2), where n =

∏q
j=1 nj and ℓ =

∏q
j=1 sj.

Let α, β > 1 be real numbers that satisfy

(5.5) min
k

{sk} ≥ α2β

(α− 1)2
(r2 + r).

Then 1
σ2
min(Ω1)

≤ αn
ℓ , with probability at least 1− 1

β2 .

Remark 5.2. The bound in Lemma 5.1 contains a factor of n, the number of
rows of Kronecker product Ω. This factor is not present in singular value bounds for
Gaussian random matrices, and is a consequence of using SRHT matrices, as seen in
bounds involving a single SRHT matrix in [28]. We choose to use SRHT instead of
Gaussian matrices in our context because the Kronecker product of Gaussian matrices
is no longer Gaussian, while the Kronecker product of SRHT matrices retains some
SRHT properties. In the empirical results shown in § 7.1, we see that using SRHT
matrices produces similar accuracy to Gaussian matrices; we anticipate that future
work in random matrix theory will be able to improve this factor.

Theorem 5.3. Let X̂ = QQ⊤X be the approximation given by the randomized
range finder of matrix X ∈ Rm×n with target rank r, oversampling parameter p such
that ℓ = r + p ≤ min{m,n}, and random sampling matrix Ω as defined in (5.2). Let
α, β > 1 satisfy (5.5). Then, with probability at least 1− 1

β2 ,
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∥X−QQ⊤X∥F ≤

(1 + αn

ℓ

)min{m,n}∑
i=r+1

σ2
i (X)

1/2

.

Proof. Immediately from [17, Theorem 9.1] and recalling the partitioning from
(5.3) and (5.4), we have

(5.6)
∥X−QQ⊤X∥2F = ∥(I−QQ⊤)X∥2F ≤ ∥Σ2∥2F + ∥Σ2Ω2Ω

†
1∥2F

≤
(
1 + ∥Ω2∥22∥Ω

†
1∥22
)
∥Σ2∥2F ,

We can apply the singular value bounds from Lemma 5.1 to obtain the bounds for
∥Ω†

1∥22. With probability at least 1 − 1
β2 , ∥Ω†

1∥22 = 1
σ2
min(Ω1)

≤ αn
ℓ . For ∥Ω2∥22,

we use properties of both V2 and Ω: ∥Ω2∥2 = ∥V⊤
2 Ω∥2 ≤ ∥Ω∥2 = 1, as V⊤

2

has orthonormal rows, and Ω has orthonormal columns as the Kronecker prod-
uct of matrices with orthonormal columns. Combining these bounds, we obtain
∥Ω2∥22∥Ω

†
1∥22 ≤ αn

ℓ with probability at least 1 − 1
β2 . From (5.6), we now have

∥X −QQ⊤X∥2F ≤
(
1 + αn

ℓ

)
∥Σ2∥2F =

(
1 + αn

ℓ

)∑min{m,n}
i=r+1 σ2

i (X), and the result fol-
lows.

5.2. Tensor Bound. To generalize the result from Theorem 5.3 to higher di-
mensions, we first need a result that expresses the error in a Tucker decomposition in
terms of the error in each mode.

Lemma 5.4 ([29, Theorem 5.1]). Let X ∈ Rn1×···×nd and let Pj ∈ Rnj×nj for
j = 1, . . . , d be a sequence of orthogonal projectors. Then

∥X−X
d×

j=1

Pj∥2 =

d∑
j=1

∥X
j−1

×
i=1

Pi ×j (I−Pj) ∥2 ≤
d∑

j=1

∥X−X×j Pj∥2.

Recall the notation n⊘
j =

∏d
k ̸=j nk. We present our main error bound result in

Theorem 5.5, which we frame as the error bound for Alg. 4.4. This result can be
adapted to also apply to Alg. 4.3 by following similar techniques to [25, Theorem 3.2].
We include the details for completeness in Appendix E.

Theorem 5.5. Let T = [G;U1, . . . ,Ud] be the approximation given by Alg. 4.4
to X ∈ Rn1×···×nd with target rank r = (r1, . . . , rd) and oversampling parameter p.
Let ℓj = rj + p for j = 1, . . . , d. Then, for sequences {αj}dj=1 and {βj}dj=1 satisfying

(5.5), the following bound holds with probability at least 1−
∑d

j=1
1
β2
j
,

∥X− T∥ ≤

 d∑
j=1

(
1 +

αjn
⊘
j

ℓj

)
nj∑

i=rj+1

σ2
i (X(j))

1/2

+

 d∑
j=1

ℓj∑
i=rj+1

σ2
i

(
X(j)

)1/2

.

Proof. Using (5.1) to bound εcore, we need only to bound εrand. From Lemma 5.4,

we have for T̂ = [Ĝ; Û1, . . . , Ûd] computed as the intermediate rank-ℓ approximation,

∥X−T̂∥2 = ∥X−X
d×

j=1

ÛjÛ
⊤
j ∥2 ≤

d∑
j=1

∥X−X×jÛjÛ
⊤
j ∥2 =

d∑
j=1

∥X(j)−ÛjÛ
⊤
j X(j)∥2F ,

where the last equality comes from unfolding the tensor along the j-th mode for
j = 1, . . . d. We now apply the matrix bound from Theorem 5.3 on each term in this
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sum, which gives ∥X(j)−ÛjÛ
⊤
j X(j)∥2F ≤

(
1 +

αjn
⊘
j

ℓj

)∑nj

i=rj+1 σ
2
i (X(j)), except with

failure probability at most 1
β2
j
. Then the failure probability for the entire sum is the

union of all d failure probabilities for each mode, which is bounded above by the sum
of those probabilities by the union bound. Thus,

(5.7) ∥X− T̂∥2 ≤
d∑

j=1

∥X(j) − ÛjÛ
⊤
j X(j)∥2F ≤

d∑
j=1

(
1 +

αjn
⊘
j

ℓj

)
nj∑

i=rj+1

σ2
i (X(j)),

except with probability at most
∑d

j=1
1
β2
j
. Then, taking square roots gives εrand.

Combining (5.7) and (5.1), the total error in approximation is

εtotal ≤

 d∑
j=1

(
1 +

αjn
⊘
j

ℓj

)
nj∑

i=rj+1

σ2
i (X(j))

1/2

+

 d∑
j=1

ℓj∑
i=rj+1

σ2
i

(
X(j)

)1/2

,

with probability at least 1−
∑d

j=1
1
β2
j
.

We consider this result pessimistic due to the factor of n⊘
j that comes directly

from our analysis of SRHT matrices, but does not appear in our accuracy experiments
in § 7.1. We anticipate that this factor could be improved in future analysis. Also
note that the result of Theorem 5.5 differs from [11, Theorem 4.2] in two main ways:
our probability of failure is smaller ( 1

β2 per mode compared to 1
β ), and our constant in

εrand is smaller as we divide by ℓj for each j. Additionally, we use a different diagonal
matrix that is not a Kronecker product.

6. Parallel Algorithms. We design and develop parallel implementations for
all the randomized algorithms listed in Table 2. Our implementations are based
on TuckerMPI [3], which uses the STHOSVD algorithm. Similarly to TuckerMPI,
our implementations leverage distributed-memory clusters to efficiently compute the
Tucker decomposition of large multidimensional datasets. We employ the following
data distribution scheme, proposed in [3], in our implementations. To distribute
a d-way input tensor, the processors are organized in a d-way processor grid, the
dimensions of which are user-determined. Each processor owns a subtensor of the
input tensor. For example, for a 8× 6× 2 tensor and a 2× 3× 1 processor grid, each
processor owns a 4 × 2 × 2 subtensor. All matrices involved in our algorithms are
stored redundantly by every processor.

In the following sections we describe two optimizations for computing the sketch
tensor via multi-TTMs as well as parallel implementations of the two algorithms from
§ 4 with the smallest computational cost, Alg. 4.3 and Alg. 4.4. We also compare our
implementations with previous work from [12].

6.1. All-at-Once Multi-TTM. The multi-TTM operation is one of the most
expensive kernels of our algorithms and appears twice; we compute a multi-TTM both
to form the sketch tensor Y and to form the core tensor Ĝ (e.g. in Line 5 of Alg. 4.4).
It is thus crucial to optimize this operation.

A parallel implementation of a single TTM is proposed in [3]. One way to im-
plement the multi-TTM is to simply perform this existing TTM algorithm multiple
times, as shown in Alg. 6.1; we call this approach the in-sequence multi-TTM or
IS-mTTM. Note that in the algorithms bars over letters denote local data. In this
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in-sequence approach, a reduce-scatter is performed at the end of each TTM opera-
tion, reducing the amount of data each processor owns so that the computation cost
in the next TTM is also reduced. Generally, this approach performs additional com-
munications to obtain lower computational cost. However, depending on the size of
the local tensor, the reduction in computational cost may not justify the increased
communication cost.

Our algorithm is shown in Alg. 6.2, which we call the all-at-once multi-TTM or

Algorithm 6.1 In-sequence multi-TTM

1: function Ȳ = IS-mTTM(X̄, j, {Mj},P)
2: (p1, . . . , pd) = procID(P)
3: T̄ = X̄

4: for i = 1 : d and i ̸= j do
5: F = P(p1, . . . , pi−1, :, pi+1, . . . , pd)
6: T̄(i) = M̄iT̄(i)

7: Ȳ(i)=Reduce-Scatter(T̄(i), F)
8: end for
9: end function

Algorithm 6.2 All-at-once multi-TTM

1: function Ȳ = AAO-mTTM(X̄, j, {Mj},P)
2: (p1, . . . , pd) = procID(P)
3: T̄ = X̄

4: for i = 1 : d and i ̸= j do
5: T̄(i) = M̄iT̄(i)

6: end for
7: S = P(:, . . . , :, pj , :, . . . , :)
8: Ȳ(j) = Reduce-Scatter(T̄(j),S)
9: end function

AAO-mTTM. In this approach, we avoid communication until all matrices have been
multiplied with the local tensor. This strategy reduces communication by increasing
the cost of storage and computation.

The most significant difference between Alg. 6.1 and Alg. 6.2 is that at the end
of any iteration i of the in-sequence approach, we form the intermediate result Y =
X×1M1×· · ·×iMi; in the all-at-once approach, each processor stores a contribution
to Y until all iterations are completed and the all-reduce at the end of the algorithm
forms the final result.

6.1.1. Cost Analysis. To simplify the notation, we assume that the input ten-
sor is a d-way cubic tensor X ∈ Rn×···×n, that the processor tensor is size q in each
mode (qd = P processors in total), and that the input matrices {Mi}di=1 are of the
same size s × n with s < n. With this notation, we analyze the per-processor com-
puation and communication costs of performing the multi-TTM X×1 M1 × · · · ×j−1

Mj−1×j+1Mj+1×· · ·×dMd using Alg. 6.2 and compare it with that of using Alg. 6.1.
The computational cost of Alg. 6.1 can be written as

(6.1) Cin-sequence = 2

(
snd

qd
+

s2nd−1

qd
+ ...+

sdn

qd

)
= 2

(
d∑

i=1

sind−i+1

qd

)
,

and the computational cost of Alg. 6.2 can be written as

(6.2) Call-at-once = 2

(
snd

qd
+

s2nd−1

qd−1
+ ...+

sdn

q2

)
= 2

(
d∑

i=1

sind−i+1

qd−i+1

)
.

The ith terms of the summations in both (6.2) and (6.1) represent the cost of
multiplying the local factor matrix M̄i of size s × n

q and the ith mode unfolding

of tensor Ȳ = X̄ ×1 M̄1 × · · · ×i−1 M̄i−1. In Alg. 6.1, due to the reduce-scatter

at each iteration, Ȳ(i) is of size n
q × si−1nd−i

qd−1 . In Alg. 6.2, M̄i is of the same size.

However, since the reduction is delayed until the last mode, Ȳ(i) is of size
n
q ×

si−1nd−i

qd−i .

Comparing (6.1) and (6.2), it is easy to see that the computational cost of an all-at-
once multi-TTM is always higher than that of an in-sequence multi-TTM because
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each of the summands in (6.2) is at least as large as the corresponding term in (6.1).
This increase can be small, however, in certain cases. Note the two series of summands
are geometric and have the same leading term. For (6.1), the ratio of the series is s

n
while the ratio of the series in (6.2) is sq

n . As the subranks become smaller compared
to the tensor dimensions (i.e. s ≪ n), the sums of the two series get closer to their
first terms and thus their difference becomes smaller.

Using the same notations and the α-β-γ model [8], we can express the commu-
nication cost of Alg. 6.1 and Alg. 6.2. In Alg. 6.2, there is only one communication
step at the end where all P processors communicate their local tensor T̄. T̄ is a d-way
tensor with size s for all of its modes except for the jth mode which has size n

q . There-

fore, the communication cost for each processor is: αO(logP ) + βO
(

sd−1n
q

)
. The

communication cost of Alg. 6.1 is more complicated because there are d−1 communi-
cation steps and each one involves T̄(i) which is changing in size. At the ith iteration

of the for loop, T̄(i) has size s× si−1nd−i

qd−1 . Therefore, the communication cost can be

written as αO(d log q) + βO
(∑d−1

i=1
sind−i

qd−1

)
= αO(logP ) + βO

(
snd−1

qd−1

)
. We obtain

the right hand side of the equation using the assumption that s ≪ n so that the
summation is approximated by its first summand. When sq < n, the communication
cost of all-at-once multi-TTM is smaller. As the ratio n

sq increases, the benefits of
using all-at-once multi-TTM become more substantial.

6.2. Dimension Tree Optimization. In § 4.4, we discuss how dimension trees
can be used to make the randomized sketches less expensive for Alg. 4.4. In Alg. 6.3,
we present an implementation using AAO-mTTM. Here, m and n are sets of integers
in the range [1, d]. This algorithm returns Y(j), the sketch of X(j) in tensor format,
for all integers j ∈ [1, d]. Since dimension trees are a tool for reusing only local
intermediate results, Alg. 6.3 can also be modified to use IS-mTTM.

Algorithm 6.3 All modes multi-TTM using the dimension tree optimization and
all-at-once multi-TTM.

1: function {Y(j)} =All-Modes-Multi-TTM(X̄, {Φ̄j}, m, n, P)
2: (p1, . . . , pd) = procID(P)
3: Ȳ = X̄

4: for i ∈ n do
5: Ȳ(i) = Φ̄iȲ(i)

6: end for
7: if m only contains 1 integer, j then
8: S = P(:, . . . , pj , . . . , :)

9: Ȳ
(j)

= Reduce-Scatter(Ȳ,S)
10: else
11: split m in equal half m1 and m2

12: All-Modes-Multi-TTM(Ȳ, {Φ̄j}, m1, m2, P)
13: All-Modes-Multi-TTM(Ȳ, {Φ̄j}, m2, m1, P)
14: end if
15: end function

6.3. Principal Algorithms. We now combine the discussed multi-TTM ap-
proaches and the dimension tree optimization within parallel implementations of our
two best algorithms, Algs. 4.3 and 4.4. The pseudocode is provided in Algs. 6.4
and 6.5, respectively. Note that for both of these algorithms, when the size of core Ĝ

is large, it is better to perform the in-sequence multi-TTM as described in Alg. 6.1 to
produce a distributed Ĝ so that the parallel STHOSVD can be used to reduce cost.
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When Ĝ is very small, performing STHOSVD in parallel can be counterproductive as
the communication cost will dominate; it is better in this case to perform an all-gather
among all processors after the in-sequence multi-TTM, producing Ĝ redundantly on
every processor and then use the sequential STHOSVD.

Algorithm 6.4 Parallel algorithm for Alg. 4.3

1: function rSTHKron(X, r, p, P) ▷ X is distributed, the local part of X is denoted as X̄

2: Ĝ = X

3: Redundantly compute matrix of subranks S
4: for i = 1:d do
5: for j = 1:d and j ̸= i do
6: Redundantly draw d− 1 random matrices Φi,j ∈ Rnj×si,j

7: end for
8: Ȳ← AAO-mTTM(Ĝ, i, {Φi,1 . . .Φi,d}, P) ▷ Can also use in-sequence multi-TTM
9: Y = All-Gather(Ȳ,P)

10: Ûi = QR(Y(i)) ▷ QR is serial as every processor owns global Y

11: Ĝ← TTM(Ĝ, Û
T
i , i) ▷ For a single TTM we use the implementation proposed in [3]

12: end for
13: [G, {Vi}] = STHOSVD(Ĝ, r)
14: for i = 1, . . . , d do
15: Ui = ÛiVi ▷ Computed with local matrix multiplication
16: end for
17: end function

Algorithm 6.5 Parallel algorithm for Alg. 4.4 with all-at-once multi-TTM and di-
mension trees
1: function rHKron-re(X, r, p, P)
2: Compute subranks s
3: for i = 1:d do
4: Redundantly draw d− 1 random matrices Φi ∈ Rsi×ni

5: end for
6: {Y(1), . . . ,Y(d)} = All-Modes-Multi-TTM(X̄, {Φ1, . . . ,Φd}, {1, . . . , d}, ∅,P)
7: for i = 1:d do
8: Ûi =QR(Y

(i)
(i)

) ▷ Serial QR decomposition of the mode i unfolding of Y(i)

9: end for
10: Ĝ = IS-mTTM(X̄, ∅, {ÛT

1 , . . . , Û
T
d},P)

11: [G, {Vj}] = STHOSVD(Ĝ, r)
12: for i = 1, . . . , d do
13: Ui = ÛiVi ▷ Computed with local matrix multiplication
14: end for
15: end function

6.4. Comparison to Previous Work. We compare our parallel algorithms
with previous approaches, namely the parallel STHOSVD algorithm in [3] and the
approach from [12]. Assume that the input tensor is a d-way tensor X ∈ Rn×···×n

with rank (r, r, . . . , r) and that each mode of the d-way processor tensor has size q. We
also assume that s < r < l ≪ n where s is the subrank for each mode and ℓ = r + p
with p the oversampling parameter. Here s = ℓ1/(d−1) ≈ r1/(d−1). In [12], Choi
et al. proposed a data distribution scheme and a tensor matricization strategy that
reduces the communication costs of the Gram and TTM kernels. More specifically, in
this new method, before the Gram computation, communication is performed every
other mode to redistribute the tensor unfolding from a 2D distribution to a block-
column 1D distribution, which can avoid the communication cost of the later TTM
operations required to form the core tensor. This method is shown to achieve speedup
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over the parallel implementation proposed in [3]. However, these optimizations are not
suitable for our randomized algorithms for the following reason. Instead of computing
the Gram matrix of each mode unfolding, we compute each mode sketch with a multi-
TTM. Since each sketch is much smaller at the end of the multi-TTM, it is beneficial
to delay communicating the sketches as much as possible before all multi-TTM’s are
completed. However, the redistribution proposed by [12] requires every processor to
communicate the entire uncompressed local tensor before the computation. While
[12] also uses randomization to reduce computation, their focus is on reducing the
cost of computing the eigenvectors of the Gram matrix, which is achieved by using a
modified randomized SVD to replace the eigendecomposition.

To illustrate the benefit of using Kronecker-structured random matrices, we also
compare Alg. 6.4 and Alg. 6.5 with the parallel version of Alg. 4.2, which uses dense
Gaussian random matrices. The parallelized Alg. 4.2 is very similar to Alg. 6.4 with
the only difference being that we use the parallel multi-TTM to apply the Kronecker-
structured random matrices to the input tensor while in parallelized Alg. 4.2 we use a
single parallel TTM operation to apply each of the dense Gaussian random matrices.
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comp cost
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comm cost
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comp cost
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comm cost
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d

P
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P
αO(logP ) + βO( rnd−1

P1−1/d )

[12] nd+1

P
αO(dP ) + βO(n

d

P
) 2 rnd

P
-

Alg. 6.4 2 r1/(d−1)nd

P
αO(d logP ) + βO( drn

P1/d ) 2 rnd

P
αO(logP ) + βO( rnd−1

P1−1/d )

Alg. 6.5 4 r1/(d−1)nd

P
αO(d logP ) + βO( drn

P1/d ) 2 rnd

P
αO(logP ) + βO( rnd−1

P1−1/d )

Table 3: Comparison of computation and communication cost per processor. More
details can be found in Appendix G.

7. Experimental Results. We now demonstrate the numerical benefits of our
algorithms by considering the accuracy of our sequential algorithms in § 7.1, the
performance of the multi-TTM and dimension tree optimizations in § 7.2 and 7.3,
respectively, and the performance of the parallel implementations of our randomized
algorithms on synthetic data in § 7.4 and on two real datasets in § 7.5 and 7.6.

Computing platform. The results shown in § 7.1 are generated by running MAT-
LAB implementations of the sequential algorithms on a single node server. The ex-
periments shown from § 7.2 to § 7.6 are run on the Andes cluster at Oak Ridge
Leadership Computing Facility. The system consists of 704 compute nodes with 2
AMD EPYC 7302 16-core CPU’s and 256 GB of RAM. We directly call OpenBLAS
and the Netlib implementation of LAPACK for local linear algebra kernels, which are
the only available libraries on Andes.

7.1. Accuracy Results. We present an experiment on a synthetic tensor that
demonstrates the accuracy of our algorithms compared to existing deterministic and
randomized algorithms. In this experiment, we use both SRHT and Gaussian random
matrices to compare numerical accuracy to the theoretical results we derived in § 5.

We construct a synthetic 3-way tensor X ∈ R500×500×500 by forming a (super-)
diagonal tensor with geometrically decreasing entries and multiplying that tensor by
a random orthogonal matrix along each mode. We set the largest entry of the original
tensor to be 1 and choose the rate at which the core entries decrease to be 0.4 so that
the 40th entry is approximately machine precision. In our experiment, we compress
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this tensor to rank (10, 10, 10) using an oversampling parameter of p = 5. We show
boxplots of the relative error over 100 trials in Figure 3, comparing results from all our
algorithms (Algs. 4.1 to 4.4) using Gaussian random matrices as well as our principal
algorithms (Algs. 4.3 and 4.4) using SRHT random matrices. We also compare our
truncation strategy to the strategy in [11], and compare the relative error from all
randomized algorithms to the relative error obtained from deterministic STHOSVD,
Alg. 2.2.

In Figure 3, we see that the relative errors for all our randomized algorithms
deviate from the deterministic relative error by at most 10% for the given rank (the
medians are within 1%) Also, the relative errors for each trial are very close together
with each algorithm, as even the outliers are within the same order of magnitude,
with a standard deviation of 1.9 × 10−5. Regardless of random matrix distribution
or whether we reuse Φj matrices or generate new matrices for each mode, we do not
lose significant accuracy compared to either the deterministic or standard randomized
approaches. We can also see that the truncation strategy we employ in Algs. 4.1 to 4.4
is much more consistently accurate than the strategy in [11].
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Fig. 3: Boxplots of relative errors for our randomized algorithms using Gaussian
random matrices (left) and SRHT random matrices (center) compared to the relative
error for STHOSVD for the synthetic tensor with geometrically decreasing values. We
also compare the truncation methods we use to those used in [11] (right).

We show an additional accuracy experiment in Appendix F. Overall, we see com-
parable relative error for Algs. 4.3 and 4.4 to both deterministic STHOSVD and
existing randomized approaches. While our theoretical results (Theorem 5.5) apply
only to SRHT matrices, these experimental results suggest that Gaussian matrices
perform comparably in terms of accuracy.

7.2. In-Sequence TTM vs All-At-Once TTM. To compare the performance
of the two TTM approaches we discuss in § 6.1, we conduct an experiment performing
an in-sequence multi-TTM and an all-at-once multi-TTM of a 3-way tensor X ∈
R800×800×800 with matrices U,V,W ∈ Rs×800, with varying s. For this experiment,
we use 64 cores (2 nodes) arranged in a 4 × 4 × 4 processor grid. The results of
this experiment are shown in Figure 4a, where we can see that when the matrices
have relatively few rows (when sq ≪ n), the all-at-once multi-TTM is much more
communication-efficient. We observe speedups ranging from 27% to over 2×. This
fits our prediction in § 6.1. However, when n

sq is very large (i.e. the s = 5 case), both
algorithms are cheap and communication is not as dominant. When n

sq is small, all-
at-once multi-TTM has increased computational cost, and also loses its advantage in
communication cost. In this case, in-sequence multi-TTM is preferred to all-at-once
multi-TTM. For this reason, we think the all-at-once optimization is more suitable
for the sketching phase where the random matrices tend to have very few rows.
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Note that the gray bars in Figure 4a represent overhead cost. For in-sequence
multi-TTM, this overhead mainly comes from reorganizing the data in memory before
and after communication (MPI collectives). Since all-at-once multi-TTM avoids those
communication steps, it also avoids those reorganizing costs. For higher dimensions,
the benefits of all-at-once multi-TTM still depend on n

sq being large. If this ratio is
fixed, all-at-once multi-TTM will continue to outperform in-sequence multi-TTM.

7.3. Dimension Tree Optimization. To demonstrate the benefits of using di-
mension trees, we run Alg. 4.4 with and without dimension trees on synthetic tensors
with an increasing number of modes such that the total size of the input tensor and
its rank are kept close to constant. We benchmark the time it takes for both methods
to apply the random matrices {Φ} to the input tensor and present the results in Fig-
ure 4b. This computation corresponds to Line 5 of Alg. 4.4. Since the communication
and overhead costs are low, we see that the practical speedup from using dimension
trees aligns closely with the theoretical prediction, with a computational reduction of
d/2 as described in § 4.4.
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Fig. 4: Performance benefits of our multi-TTM and dimension tree optimizations

7.4. Strong scaling on synthetic data. In this experiment we benchmark four
variations of our randomized algorithms and STHOSVD as a baseline, scaling from 2
nodes (64 cores) to 32 nodes (1024 cores) on a fixed problem size. The input tensor is
a 410×410×410×410 single-precision synthetic tensor (≈ 113 GB) constructed from
multiplying a 20× 20× 20× 20 randomly generated core with four 410× 20 random
matrices. No noise is added to this synthetic tensor so it is exactly low rank. This
size is close to the largest tensor we can fit in the memory of 2 nodes, which makes
the timing results more consistent and less influenced by noise in the system. Any
order of modes used to compute the multi-TTM will not affect the performance as the
tensor size and rank are the same across modes. All six algorithms are given target
ranks (20, 20, 20, 20) and the randomized ones use oversampling parameter p = 3.

The results are presented in Figure 5, where we see that all six algorithms pre-
sented scale well to 1024 cores. All randomized algorithms outperform the determinis-
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tic STHOSVD, and the randomized algorithms that use Kronecker-structured random
matrices outperform the parallel version of Alg. 4.2. A noticeable speedup of 3–4×
is achieved by using Alg. 6.4 compared to STHOSVD. The second-best algorithm is
Alg. 6.5 with the dimension tree optimization achieving 2–3× speedup. Note that
the use of all-at-once multi-TTM provided little improvement over in-sequence multi-
TTM in this case, because the compression ratio is very high so the multi-TTMs are
not bottlenecks. We can also see that the dimension tree optimization does provide
noticeable and consistent speedup for Alg. 6.5.
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Fig. 5: Strong scaling of different algorithm variants

7.5. Miranda dataset. The Miranda dataset [6, 32] contains three-dimensional
simulation data of the density ratios of a non-reacting flow of viscous/diffusive fluids.
This dataset is 3072×3072×3072. Its values are in single-precision and range between
1 and 3. We show visualizations for this dataset in Appendix H.1.

In this experiment, we compare five variations of our randomized algorithms as
well as the deterministic STHOSVD algorithm using the Miranda dataset. We use 4
nodes (128 cores) organized as a 1× 8× 16 tensor. The target rank we choose for this
run is (502, 504, 361), which corresponds to a 10−2 reconstruction error (estimated
using pre-computed singular values of the unfolding of the data tensor for each mode).

The subrank matrix we used for Alg. 6.4 is

[
1 39 13
30 1 17
6 61 1

]
. For Alg. 6.5, the subrank

vector we used is (20, 20, 26). The relative error achieved by STHOSVD is 0.0094,
while the relative errors of the randomized algorithms Algs. 4.2, 6.4 and 6.5 are 0.0234,
0.0194, and 0.0189, respectively, which are all within 2.5× of the deterministic error.

The performance results are recorded in Figure 6a, and we visualize reconstructed
tensors from Algs. 2.2, 4.2 and 6.5 in Appendix H.1. First, we note that STHOSVD
is particularly slow when compared to the randomized algorithms, in this case partly
because the Miranda dataset has fewer modes and each mode is large. As a result,
the Gram matrices are large and the eigendecompositions of those Gram matrices are
expensive. Moreover, the eigendecompositions are carried out redundantly on every
processor due to the TuckerMPI assumption of small individual mode dimensions.
(More details on the parallel implementation of STHOSVD can be found in [3]). The
randomized algorithms, on the other hand, can avoid this expensive step completely,
and we see up to a 16× speedup, comparing Alg. 6.4 to STHOSVD. In the next section,
we compare the performance of all the algorithms again with a higher-order tensor
where each mode is relatively small. In that case, the Gram matrices are smaller and
the eigendecompositions are cheaper, so the deterministic algorithm appears more
competitive.

Also note that random number generation (forming the random matrices {Ω}) in
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Alg. 4.2 takes up a large percentage of the total time. These results demonstrate the
benefits of generating fewer random numbers by using Kronecker-structured random
matrices. Now, comparing the computation cost (red bar) of Alg. 4.2 with that of
the following algorithms to the right, we can see that using Kronecker-structured
random matrices further reduces the computation cost of forming the factor matrices
as we have predicted. Among the algorithms that use Kronecker-structured random
matrices, Alg. 6.4 and Alg. 6.5 achieve the best performance. Comparing multi-
TTM methods, we see that using either IS-mTTM or AAO-mTTM in Alg. 6.4 results
in very similar performance. Although AAO-mTTM achieved a 3× speedup in the
communication cost of forming the factor matrices (pink bar) over IS-mTTM, the
absolute speedup is not significant because the communication cost using IS-mTTM
is already very small. This is mostly due to the subranks being very small compared
to the size of the input tensor. Finally, we note that with our optimizations, applying
the factor matrices to truncate the input tensor (the blue and light blue bars) now
becomes the bottleneck of the algorithm.

7.6. Stats-Planar dataset. The SP dataset is generated from the simulation of
a statistically stationary planar (SP) methane-air flame [23]. The data has dimensions
500× 500× 500× 11× 400, with the first 3 modes representing a 3D spatial grid, the
4th mode representing 11 variables, and the 5th mode representing time steps. This
data has been used in previous studies such as [3] to demonstrate the effectiveness
of Tucker decomposition algorithms. In this work, we use the single-precision-max-
normalized version of this dataset. We visualize the 250th slice for each of the first
three modes of the SP tensor in Appendix H.1.

Similarly to the experiment on the Miranda dataset, we compare five variations
of the randomized algorithm and the deterministic STHOSVD algorithm using 1024
cores (32 nodes). The target rank we use is (31, 38, 35, 6, 11), which is the rank
returned by the STHOSVD algorithm satisfying a 10−2 error tolerance. The subrank
vector we used for Alg. 6.5 is

[
2 2 2 3 4

]
and the subrank matrix used for

Alg. 6.4 is 
0 3 3 2 2
3 0 4 2 2
2 5 0 2 2
2 2 2 0 2
2 2 2 2 0

 .

The relative error achieved by STHOSVD on this dataset is 0.0028, while the relative
errors of the randomized algorithms Algs. 4.2, 6.4 and 6.5 are 0.0050, 0.0079, and
0.0079, respectively, which are all within 3× of the deterministic error.

The performance results are shown in Figure 6b. The speedup of the randomized
algorithms appears less dramatic compared to the results from the Miranda dataset,
which is mainly due to the difference in dimensions of these two datasets. Recall
that compared to the Miranda dataset, the SP tensor is of higher order but has a
smaller size in each mode. As a result, the sequential eigendecomposition in the
STHOSVD algorithm is no longer as expensive. We also see that Algs. 6.4 and 6.5
are still the best-performing algorithms. Alg. 4.2 suffers from slow random number
generation, similar to the experiments on the Miranda dataset. Finally, forming the
factor matrices is no longer a bottleneck for tensors with more cubical dimensions. In
this case, accelerating the computations applying these factor matrices to derive the
core tensor will become a more important issue.
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Form {Û}-comm

Form Ĝ-comp
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Fig. 6: Performance breakdown of all algorithms on our two real datasets

8. Conclusions and Future Work. We develop new randomized algorithms
using a Kronecker product of random matrices that significantly decrease the com-
putational cost in computing a Tucker decomposition. By accelerating the sketching
step using Kronecker products, we remove the SVD as the dominant computational
bottleneck. Our algorithms also reduce the number of random entries generated,
which, as shown in our experiment results, could result in significant savings in the
runtime compared to standard randomized algorithms. As the SVD step is no longer
the dominant computation, future directions include accelerating the TTM compu-
tation, the other dominant portion of computing a Tucker decomposition, perhaps
through a one-pass approach similar to [27]. We develop probabilistic error bounds
for our algorithms using SRHT matrices as they generalize to Kronecker products
better than Gaussian matrices. The empirical results comparing Gaussian and SRHT
matrices show that the error incurred from using SRHT matrices is not any worse
than using Gaussian matrices. Our theoretical bounds are pessimistic in comparison,
so there is room for improvement in the analysis, another potential future direction.
We implement our new randomized algorithms in parallel, developing a new algorithm
that parallelizes the most expensive SVD component. Previous approaches such as
[12] parallelize other components, leaving the most expensive part to be computed
locally. Overall, we show in this work that choosing a random matrix that fits the
structure of our problem is beneficial. The dense Gaussian matrix typically used
in RandSVD in particular is not required, and performance is greatly improved by
exploiting appropriate structure.

Appendix A. Additional Algorithm: Randomized HOSVD with Kron-
ecker product. We now include the case of Alg. 4.4 where we generate an indepen-
dent set of Kronecker factors for each mode.

Appendix B. Detailed Complexity Analysis for Algs. 4.3 and 4.4.
Cost of Alg. 4.3. First consider Alg. 4.3 (rSTHKron). We form the sketch Y for

mode j in Line 6, involving an intermediate core tensor as well as random matrices
{Φk}dk ̸=j . The intermediate core at iteration j has dimensions
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Algorithm A.1 Randomized HOSVD with Kronecker product

1: function [G, {Uj}] = rHKron(X, r, p)
2: Compute matrix of subranks S
3: for j = 1 : d do
4: Draw d− 1 random matrices Φj,k ∈ Rsj,k×nk for k = 1, . . . , j − 1, j + 1, . . . , d
5: Y← X×1 Φj,1 × · · · ×j−1 Φj,j−1 ×j+1 Φj,j+1 × · · · ×d Φj,d

6: Compute thin QR Y(j) = ÛjR
7: end for
8: Ĝ = X×1 Û

T
1 × · · · ×d Û

T
d

9: [G, {Vj}] = STHOSVD(Ĝ, r)

10: Uj = ÛjVj for j = 1, . . . , d
11: end function

(B.1) ℓ× · · · × ℓ︸ ︷︷ ︸
j−1

×n× · · · × n︸ ︷︷ ︸
d−j+1

,

and the matrices {Φk}j−1
k=1 have dimensions s× ℓ, while the matrices {Φk}dk=j+1 have

dimensions n× ℓ. We can compute the multi-TTM with any order of modes, but the
most efficient in this particular case is to start with a mode in which the dimension is
n. Without loss of generality, we thus compute the product in reverse order of modes.
Then, we have two separate cases corresponding to the different dimensions of the Φ
matrices. For modes d to j + 1, the cost is

∑d−j+1
i=1 2siℓj−1nd+2−i−j . The cost for

modes j − 1 to 1 is
∑j−2

i=1 2ℓj−isd−j+i+1.
In Line 8, we perform a single TTM to compute the intermediate core. In mode

j, we compute a TTM with core Ĝ with the same dimensions as in (B.1), and factor

matrix Û
⊤
j with dimensions n× ℓ. The cost of this product is 2ℓjnd−j+1. Putting all

modes together, the dominant costs of Alg. 4.3 are

2

d∑
j=1

(
ℓjnd−j+1 +

d−j+1∑
i=1

siℓj−1nd+2−i−j +

j−2∑
i=1

ℓj−1sd−j+i+1

)
.

Cost of Alg. 4.4. Now considering Alg. 4.4, the sketch is computed in Line 5 of the
full tensor X ∈ Rn×n×···×n and random matrices Φj ∈ Rs×n for j = 1, . . . , d. For any

mode, the cost is
∑d−1

i=1 2sind−i+1. Then without the dimension tree optimization, the

cost for all modes is d
∑d−1

i=1 2sind−i+1. Incorporating dimension trees as discussed in
§ 4.4 reduces the constant 2d to 4, so the cost of Line 5 in Alg. 4.4 for all modes is
4
∑d−1

i=1 sind+1−i.
After all the modes are processed, we compute the core via a multi-TTM in Line 8

in Alg. 4.4 of tensor X ∈ Rn×n×···×n and factor matrices Ûj for j = 1, . . . , d. The cost

of this multi-TTM, computing in any order of modes, is
∑d

j=1 2ℓ
jnd+1−j . Combining

all the costs, including d sketch computations and core computations, the complexity
of Alg. 4.4 is

4

d−1∑
i=1

sind+1−i + 2

d∑
j=1

ℓjnd+1−j .

Note that we do not include the core truncation step in Line 10 of Alg. 4.3 or Line 9
of Alg. 4.4 in the dominant costs as the leading order term in this cost is only ℓd+1

for all algorithms. We also ignore the cost of the thin QR factorizations in Line 6 in
Alg. 4.4 and Line 7 in Alg. 4.3 as that cost is 2dℓ2n in all three algorithms.

Appendix C. Bounds on Core Singular Values.
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Lemma C.1. Let tensors X ∈ Rn1×···×nd ,Y ∈ Rℓ1×···×ℓd and matrices Uj ∈
Rnj×ℓj with orthonormal columns such that Y = X×1 U

⊤
1 × · · · ×d U

⊤
d . Then

σi

(
Y(j)

)
≤ σi

(
X(j)

)
for each mode j and for each i = 1, . . . ,min{ℓj , ℓ⊘j }.

Proof. First consider an m × n matrix B and matrix A = BV for V with
k orthonormal columns. We can show that σi(A) ≤ σi(B) for any index i =
1, . . . ,min{m, k}. Consider first that A is a submatrix of B

[
V V⊥

]
, implying that

A⊤A is a principal submatrix of . Then we can directly apply the Cauchy interlacing
theorem [18, Theorem 4.3.28] to see that σi(A) = λi(A

⊤A) ≤ λi(B
⊤B) = σi(B).

The same argument applies to the transpose ofA = U⊤B forU with orthonormal
columns. Thus, for U and V with orthonormal columns and A = U⊤BV, σi(A) ≤
σi(B) for i ranging from 1 to the minimum of the numbers of columns of U and V.

Now, letA = Y(j), recalling thatY(j) = UjX(j)(Ud⊗Ud−1⊗· · ·⊗Uj+1⊗Uj−1⊗
· · · ⊗U1). Recall that the Kronecker product of matrices with orthonormal columns
also has orthonormal columns. Thus, σi(Y(j)) ≤ σi(X(j)) for i = 1, . . . ,min{ℓj , ℓ⊘j }
and j = 1, . . . , d.

Appendix D. Proof of Lemma 5.1.

Proof. Let W = V⊤
1 ∈ Rr×n for notational simplicity, and recall that Ω =

D(H1 ⊗ · · · ⊗ Hq) is the Kronecker product of independent SRHT matrices where
D ∈ Rn×n and Hj ∈ Rnj×sj for every j, given n =

∏q
j=1 nj and ℓ =

∏q
j=1 sj . Define

G = (WΩ)(WΩ)⊤ ∈ Rr×r. Note that WΩ is equivalent to Ω1 ∈ Rr×ℓ.
Our approach will focus on the elementwise representation of G and will be com-

posed of 3 main steps: first, we will express the elements of G in terms of two
summands M and N that can be bounded more easily; second, we will obtain a de-
terministic bound for ∥M∥2 and then bound E[N2

ij ], which is the bulk of the proof;
and third, we use our result from the previous step in conjunction with Markov’s in-
equality to obtain a concentration inequality for ∥N∥2. Combining all these pieces will
then give us the desired bound. Note that our three main steps follow the approach
of [31], which analyzes the case where Ω is a single SRHT matrix.

Define H = H1 ⊗ H2 ⊗ · · · ⊗ Hq, letting the Kronecker product of subsampled
Hadamard matrices be H for ease of notation. Then we have another way to express
G as

(D.1) G = (WΩ)(WΩ)⊤ = WDHH⊤DW⊤ = WDFDW⊤,

letting F = HH⊤. There are some important properties of D and F we will need,
which we now explore. The diagonal matrix D has i.i.d. entries drawn from the
Rademacher distribution so that EDa = 0 and D2

a = 1 for a = 1, . . . , n.
Each element of F can be written as a product of the entries of individual Gram

matrices HjH
⊤
j . Specifically, Fab = (H1H

⊤
1 )i1j1(H2H

⊤
2 )i2j2 · · · (HqH

⊤
q )iqjq , with a

the linear index with respect to i1, . . . , iq and b the linear index with respect to
j1, . . . , jq. This representation allows us to break dependent expressions down into
their independent parts, as each Hi is independent from Hj when i ̸= j. We can then
write the expectation of Fab as

(D.2) EFab = E(H1H
⊤
1 )i1j1E(H2H

⊤
2 )i2j2 · · ·E(HqH

⊤
q )iqjq .

From [31, Eqn. 38], we have that E(HkH
⊤
k )ikjk = 0 for ik ̸= jk. If a ̸= b, then ik ̸= jk

for at least one k. Combining this and (D.2), we can say that EFab = 0 for a ̸= b. Now
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consider the case where a = b. From [31, Eqn. 37], we have that (HkH
⊤
k )ikik = sk/nk

deterministically. Then,

(D.3) Faa =

q∏
k=1

sk
nk

=
ℓ

n
.

The last piece we will need is E[F 2
ab]. From [31, Eqn. 39], E[(HkH

⊤
k )

2
ikjk

] = sk/n
2
k for

ik ̸= jk, and E[(HkH
⊤
k )

2
ikik

] = s2k/n
2
k from above. If a ̸= b, then ik′ ̸= jk′ for at least

one k′. Combining this and (D.2),

(D.4) E[F 2
ab] ≤

sk′

n2
k′

q∏
k=1
k ̸=k′

s2k
n2
k

=
ℓ2

sk′n2
≤ ℓ2

mink{sk}n2
=

ℓ2

s∗kn
2
,

letting s∗k = mink{sk}.
With all these pieces in mind, we begin the main steps of the proof. We start

with an elementwise representation of G, using the form in (D.1), with

Gij =

n∑
a,b=1

WiaDaFabDbWjb

=

n∑
a=1

WiaWjaD
2
aFaa +

n∑
a=1

WiaDa

n∑
b=1
b ̸=a

WjbDbFab,

for 1 ≤ i, j ≤ r. Consider the first term, where we have isolated the case a = b.
As the rows of W are orthonormal, D2

a = 1, and Faa = ℓ/n, Gij can be written as
Gij = ℓ

nδij +
∑n

a=1 WiaDa

∑n
b=1
b̸=a

WjbDbFab, where δij is the Kronecker delta which

is 1 when i = j and 0 otherwise. Defining M ∈ Rr×r to be the diagonal matrix
with ℓ/n as each diagonal entry, and letting N ∈ Rr×r be the matrix with entries
Nij =

∑n
a=1 WiaDa

∑n
b=1
b̸=a

WjbDbFab, we have G = M+N.

As M is a diagonal matrix, we can easily see ∥M∥2 = ℓ/n. Bounding ∥N∥ is
trickier; our approach will be to use the fact E∥N∥22 ≤ E∥N∥2F =

∑r
i,j=1 E[N2

ij ] and

first bound E[N2
ij ]. We start by expanding the product

(D.5)

E[N2
ij ] = E

 n∑
a=1

WiaDa

n∑
b=1
b ̸=a

WjbDbFab


 n∑

c=1

WicDc

n∑
f=1
f ̸=c

WjfDfFcf



= E
n∑

a=1

W 2
ia

 n∑
b=1
b̸=a

WjbDbFab


2

+ E
n∑

a,c=1
a̸=c

WiaWicDaDc

n∑
b=1
b̸=a

WjbDbFab

n∑
f=1
f ̸=c

WjfDfFcf ,

which we have separated into the terms where a = c and a ̸= c. Consider the first
term of (D.5), where a = c. As W is a deterministic matrix, the expectation only
affects the terms with Db and Fab, so we have

(D.6) E
n∑

a=1

W 2
ia

 n∑
b=1
b ̸=a

WjbDbFab


2

=

n∑
a=1

W 2
iaE

 n∑
b=1
b ̸=a

WjbDbFab


2

.
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Now consider the expectation portion of (D.6) for a fixed 1 ≤ a ≤ n. We can expand
this product and distribute the expectation as

E

 n∑
b=1
b ̸=a

WjbDbFab


2

= E
n∑

b=1
b ̸=a

WjbDbFab

n∑
f=1
f ̸=a

WjfDfFaf

=

n∑
b,f=1
b,f ̸=a

WjbWjfE[DbDfFabFaf ] =

n∑
b=1
b ̸=a

W 2
jbE[F 2

ab] +

n∑
b,f=1
b,f ̸=a
b ̸=f

WjbWjfE[DbDfFabFaf ]

where the last equality separates terms into where b = f and where b ̸= f , respectively.
From (D.4) and as the rows of W are normalized, we can write the term where b = f

as
∑n

b=1
b̸=a

W 2
jbE[F 2

ab] ≤
∑n

b=1 W
2
jb

ℓ2

s∗kn
2 = ℓ2

s∗kn
2 . The term where b ̸= f can be written

as
∑n

b,f=1
b,f ̸=a
b̸=f

WjbWjfE[DbDfFabFaf ] =
∑n

b,f=1
b,f ̸=a
b ̸=f

WjbWjfEDbEDfE[FabFaf ] = 0 from

EDb = 0.These two results can be combined into the expectation portion of (D.6) to

obtain
∑n

a=1 W
2
iaE

(∑n
b=1
b̸=a

WjbDbFab

)2

≤
∑n

a=1 W
2
ia

ℓ2

s∗kn
2 = ℓ2

s∗kn
2 .

We now focus on the second term of (D.5), where a ̸= c. We split up both of the
last two sums to extract the terms where b = c and where f = a, giving

E
n∑

a,c=1
a̸=c

WiaWicDaDc

n∑
b=1
b̸=a

WjbDbFab

n∑
f=1
f ̸=c

WjfDfFcf =

E
n∑

a,c=1
a̸=c

WiaWicDaDc

WjcDcFac+

n∑
b=1

a ̸=b̸=c

WjbDbFab


WjaDaFca+

n∑
f=1

a̸=f ̸=c

WjfDfFcf

 .

We expand this product into four terms we can bound separately, as

E
n∑

a,c=1
a̸=c

WiaWicDaDc

WjcDcFac+

n∑
b=1

a̸=b̸=c

WjbDbFab


WjaDaFca+

n∑
f=1

a̸=f ̸=c

WjfDfFcf


= E

n∑
a,c=1
a̸=c

WiaWicDaDcWjcWjaDcDaFacFca(D.7a)

+ E
n∑

a,c=1
a̸=c

WiaWicDaDc

n∑
b=1

a̸=b ̸=c

WjbDbFab

n∑
f=1

a̸=f ̸=c

WjfDfFcf(D.7b)

+ E
n∑

a,c=1
a̸=c

WiaWicDaDcWjcDcFac

n∑
f=1

a̸=f ̸=c

WjfDfFcf(D.7c)

+ E
n∑

a,c=1
a̸=c

WiaWicDaDcWjaDaFca

n∑
b=1

a̸=b ̸=c

WjbDbFab.(D.7d)

Consider (D.7a). As D2
k = 1 and F is symmetric, the expectation is just affected by
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F 2
ac. We then have

E
n∑

a,c=1
a ̸=c

WiaWicDaDcWjcWjaDcDaFacFca =

n∑
a,c=1
a̸=c

WiaWicWjcWjaE[F 2
ac]

≤ ℓ2

s∗kn
2

n∑
a,c=1
a̸=c

WiaWicWjcWja ≤ ℓ2

s∗kn
2

n∑
a,c=1

WiaWicWjcWja

=
ℓ2

s∗kn
2

(
n∑

a=1

WiaWja

)2

=
ℓ2

s∗kn
2

[
WW⊤

]2
ij
= δij

ℓ2

s∗kn
2
.

In all three of the remaining parts, (D.7b), (D.7c), and (D.7d), distributing the expec-
tation to the independent random components gives us the expectation of the product
of independent Rademacher entries. This means all three of these parts are equal to
0.

With all these pieces, we now have E[N2
ij ] ≤ ℓ2

s∗kn
2 + δij

ℓ2

s∗kn
2 . With the bound on

E[N2
ij ], we can now bound the expectation of the norm of N: E∥N∥22 ≤ E∥N∥2F =

E
∑r

i,j=1 N
2
ij ≤ ℓ2

s∗kn
2

∑r
i,j=1(1+ δij) = (r2 + r) ℓ2

s∗kn
2 . Then, using Markov’s inequality,

∥N∥22 ≤ β(r2+r)ℓ2

s∗kn
2 with probability at least 1− 1

β2 .

Now consider the term ∥G†∥2 . Recalling that G = M+N, we can express this
instead as G = (I +NM−1)M. Then we can write G† = M−1(I +NM−1)†. Tak-
ing norms, we have ∥G†∥2 ≤ ∥M−1∥2∥(I +NM−1)†∥2 ≤ n

ℓ

∑∞
k=0 ∥NM−1∥k2 , where

we use the Taylor expansion (I + NM−1)† =
∑∞

k=0(−NM−1)k (see [18, Corollary

5.6.16] for more details). We can then write ∥G†∥2 ≤ n
ℓ

∑∞
k=0

(
∥N∥2∥M−1∥2

)k
.

We now consider ∥N∥2∥M−1∥2 before the entire expression. As ∥M−1∥2 = n/ℓ,

∥N∥2∥M−1∥2 ≤
√

β(r2+r)
s∗k

≤ 1 − 1
α , with probability at least 1 − 1

β2 , where the last

inequality comes from (5.5). Then, ∥G†∥2 ≤ n
ℓ

∑∞
k=0

(
1− 1

α

)k
= nα

ℓ . Our smallest

singular value is then 1
σ2
min(WΩ)

= ∥G†∥2 ≤ αn
ℓ , with probability at least 1 − 1

β2 .

Taking the square root, we obtain the desired result.

Appendix E. STHOSVD Error Analysis.

Theorem E.1. Let T = [G;U1, . . . ,Ud] be the approximation given by Alg. 4.3
to X ∈ Rn1×···×nd with target rank r = (r1, . . . , rd) and oversampling parameter p.
Let ℓj = rj + p for j = 1, . . . , d. Then for sequences {αj}dj=1 and {βj}dj=1 satisfying

(5.5), the following bound holds with probability at least 1−
∑d

j=1
1
β2
j
,

∥X− T∥ ≤

 d∑
j=1

(
1 +

αjn
⊘
j

ℓj

) ∑
i=rj+1

σ2
i (X(j))

1/2

+

 d∑
j=1

ℓj∑
i=rj+1

σ2
i (X(j))

1/2

.

Proof. The quantity εcore is bounded from (5.1), so we only consider εrand. Let

Ĝ
(j)

= X×1 Û
⊤
1 ×2 · · · ×j Û

⊤
j be the partially truncated core tensor after processing

mode j, and let T̂
(j)

= Ĝ
(j)

×1 Û1 ×2 · · · ×j Ûj the resulting partial approximation
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to X. From the first equality of Lemma 5.4, we have

∥X− T̂∥2 = ∥X−X×1 Û1Û
⊤
1 ×2 · · · ×d ÛdÛ

⊤
d ∥2

=

d∑
j=1

∥T̂
(j−1)

− T̂
(j)

∥2

=

d∑
j=1

∥Ĝ
(j−1)

×1 Û1 ×2 · · · ×j−1 Ûj−1 ×j (I− ÛjÛ
⊤
j )∥2.

Consider the j-th term in the sum. We unfold to obtain

∥T̂
(j−1)

− T̂
(j)

∥2 = ∥(I− ÛjÛ
⊤
j )Ĝ

(j−1)

(j) (I⊗ · · · ⊗ I︸ ︷︷ ︸
d−j

⊗Ûj−1 ⊗ · · · ⊗ Û1)
⊤∥2F

≤ ∥(I− ÛjÛ
⊤
j )Ĝ

(j−1)

(j) ∥2,

as the columns of factor matrices Ûj are orthonormal for all j = 1, . . . , d. We can

then apply Theorem 5.3 to ∥(I− ÛjÛ
⊤
j )Ĝ

(j−1)

(j) ∥, giving

∥(I− ÛjÛ
⊤
j )Ĝ

(j−1)

(j) ∥2 ≤

(
1 +

αjn
⊘
j

ℓj

)
nj∑

i=rj+1

σ2
i (Ĝ

(j−1)

(j) ),

except with probability at most 1
β2
j
. As Ĝ

(j−1)
is a random quantity, we must bound

this by the singular values of X. We can directly apply Lemma C.1 to Ĝ
(j−1)

=

X×1 Û
⊤
1 ×2 · · · ×j Û

⊤
j relating the singular values of Ĝ

(j−1)
to those of X. Thus,

∥T̂
(j−1)

− T̂
(j)

∥2 ≤

(
1 +

αjn
⊘
j

rj

)
nj∑

i=ℓj+1

σ2
i (X(j)),

except with probability at most 1
β2
j
. The failure probability for the entire sum is the

union of all d failure probabilities for each mode, bounded above by the sum of those
probabilities by the union bound. Then,

∥X− T̂∥2 =

d∑
j=1

∥T̂
(j−1)

− T̂
(j)

∥2

≤
d∑

j=1

(
1 +

αjn
⊘
j

ℓj

)
nj∑

i=rj+1

σ2
i (X(j)),

except with probability at most
∑d

j=1
1
β2
j
. Taking square roots gives εrand. Combining

εrand and εcore, the total error is then

∥X− T∥ ≤

 d∑
j=1

(
1 +

αjn
⊘
j

ℓj

)
nj∑

i=rj+1

σ2
i (X(j))

1/2

+

 d∑
j=1

ℓj∑
i=rj+1

σ2
i (X(j))

1/2

.
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Appendix F. Accuracy. We construct a different synthetic tensor for our
second accuracy experiment. For this case, we generate X ∈ R500×500×500 to be a
random 3-way tensor with true rank (50, 50, 50) and added 10−4 relative Gaussian
noise. We use p = 5 for our oversampling parameter. In Figure 7, we plot the
relative error resulting from our algorithms with increasing target rank. We compare
our algorithms to the deterministic STHOSVD as well as the randomized algorithm
using one large random matrix. In the left plot, we show the relative error from
all algorithms using Gaussian random matrices, and in the right plot, we show the
relative error from our suggested algorithms using SRHT random matrices. In both
plots, the relative error for all algorithms is large until we reach the true rank. At
that point, the error drops close to the noise level, but the randomized algorithms
have a higher relative error than the deterministic. All the randomized algorithms
are comparable to each other, with errors exceeding the deterministic algorithm by
factors of 2 to 7×.

0 20 40 60 80 100
10−5

10−4

10−3

10−2

10−1

100

Target Rank

R
el
at
iv
e
E
rr
or

Gaussian Random Matrix

Alg. 2.2
Alg. 4.1
Alg. 4.2
Alg. A.1
Alg. 4.3
Alg. 4.4

0 20 40 60 80 100
10−5

10−4

10−3

10−2

10−1

100

Target Rank

R
el
at
iv
e
E
rr
or

SRHT Random Matrix

Alg. 2.2
Alg. 4.3
Alg. 4.4

Fig. 7: Relative error of our randomized algorithms with Gaussian (left) and SRHT
(right) random matrices as the target rank (r, r, r) increases on the synthetic tensor
with true rank (50, 50, 50) and 10−4 relative Gaussian noise.

Appendix G. Computation and Communication Cost Comparison with
Previous Work. In this section, we compare the leading terms of the per-processor
computation and communication cost of performing the Tucker decomposition using
the four algorithms listed in Table 3. We will go over the expressions in each cell row
by row. To reiterate notations, the input tensor is a d-way tensor X ∈ Rn×···×n with
rank (r, r, . . . , r) and the size of each mode of the d-way processor tensor is q. We also
assume that s < r < l ≪ n where s is the subrank for each mode and ℓ = r + p with
p the oversampling parameter.

For the STHOSVD algorithm analyzed in [3, Section 7], the computation cost
of forming the factor matrices includes computing the Gram matrices of the tensor
unfoldings and the eigendecomposition of those Gram matrices. Computing the Gram
matrices dominates the cost in this scenario. Furthermore, although there are d
Gram matrices, one for each mode, the latter d− 1 Gram matrices are much cheaper
to compute than the first; this reduction is due to the truncation occurring after
processing each mode of the tensor. Therefore, when comparing the computation and
bandwidth cost, we count only the first Gram matrix computation. For computation

cost, the leading term is nd+1

P , resulting from multiplying the local tensor unfolding of
size n

q × (nq )
d−1 with its own transpose. Leveraging the symmetry, the constant

prefactor is 1. Considering bandwidth cost, computing the first Gram matrix is

dominated by an all-to-all on the local input tensor which has nd

P elements. Since
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latency cost is not affected by truncation of the tensor, we count all d Gram matrix
computations. The point-to-point all-to-all collective is performed over the processor
fiber, so the cost is O(q) = O(P 1/d) per mode.

Forming the core tensor requires d TTMs. Again, due to truncation, we count
only the first TTM as the leading computational cost. In the first TTM, we multiply
the local factor matrix of size r× n

q with the local tensor unfolding of size n
q × (nq )

d−1,

which leads us to the term 2 rnd

P . The communication involves one reduce-scatter on
the product of the local factor matrix and the local input tensor, leading us to the

term βO(r(nq )
d−1) = βO( rnd−1

P 1−1/d ). For latency cost, there are d reduce-scatters, one

for each mode, over the processor fiber, yielding O(d log q) = O(logP ) messages.
For the algorithm proposed by Choi et al. in [12], the computational cost of

forming the factor matrices is the same as stated above since they also compute the
SVD through local eigendecomposition of the Gram matrices. The same applies to
the computation cost of forming the core tensor.

The communication differs slightly. In this algorithm, for every other mode,
an all-to-all among all the processors is performed to redistribute the global tensor
unfolding into a 1D block-column fashion, which contributes αO(dP ) to the latency

cost and βO(n
d

P ) to the bandwidth cost. Again we only count the first all-to-all for
bandwidth due to truncation of the tensor in subsequent modes. Computing the
Gram matrices requires an additional d all-reduces among all the processors, which
contributes αO(d logP ) and βO(dn2) to the latency and bandwidth cost respectively,
but these are lower order terms. Forming the core tensor does not require additional
communication given the redistributions described above.

In Alg. 6.4, the computation cost of forming the factor matrices is dominated by
the cost of forming the 1st factor matrix due to truncation, which is further dominated
by the cost of multiplying the first random matrix of size s× n

P 1/d with the local tensor

unfolding. Thus the leading term arrives at 2snd

P , which has leading order term

2 r1/(d−1)nd

P . Using the all-at-once multi-TTM algorithm, the communication is that

of a reduction of only the final result, which has dimensions (n/P 1/d) × s × · · · × s,
for a cost of αO(logP ) + βO(sd−1n/P 1/d). This cost is consistent across modes.
Forming the core in Alg. 6.4 has similar computation and communication cost to that
of the STHOSVD algorithm except for the sizes of the factor matrices are l × n

P 1/d ,
but the leading order term in the costs stays the same. This assumes the in-sequence
Multi-TTM algorithm is used, as in our implementation.

In Alg. 6.5, the computation cost of forming the factor matrices is double that of
Alg. 4.3 because the cost is dominated by the first two internal nodes of the dimension
tree, each of which involves multiplying one random matrix with the local input
tensor. The communication cost of forming the factor matrices is also similar to that
of Alg. 6.4. For Alg. 6.5, the leading terms of the computation and communication
cost of forming the core tensor are the same as that of Alg. 6.4.

Appendix H. Additional Experiments.

H.1. Miranda and SP visualizations. We show a three-dimensional visual-
ization of a portion of the original Miranda tensor in Figure 8.

To validate the effectiveness of our algorithms on the Miranda tensor, we compare
visualizations of a slice of the reconstructed tensor computed via Algs. 2.2, 4.2 and 6.5.
The slices are shown in Figure 9. All three algorithms achieve a reconstruction error of
0.01 and very little difference can be seen between the results of the algorithms and the
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x
y

Fig. 8: Three-dimensional visualization of a subtensor of the Miranda tensor, with
indices from 1200 to 1700 in each mode

original data, shown in the first row. Note that we picked Alg. 6.5 as a representative
algorithm while Alg. 6.4 and Alg. A.1 with AAO-mTTM generate similar results.

We also visualize the slices of the the original SP tensor as well as of the tensors
reconstructed from the decompositions computed by our randomized algorithms in
Figure 10. We can see that all of the algorithms preserve the significant features of
the three slices although some compression artifacts can be seen. One reason why
these artifacts are more noticeable, compared to the results we get from the Miranda
dataset, is that we are zooming into a much smaller portion (500 × 500 instead of
3072× 3072) of the total tensor.
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