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Abstract. Most state-of-the-art deep neural networks are overparameterized and
exhibit a high computational cost. A straightforward approach to this problem is
to replace convolutional kernels with its low-rank tensor approximations, whereas
the Canonical Polyadic tensor Decomposition is one of the most suited models.
However, fitting the convolutional tensors by numerical optimization algorithms
often encounters diverging components, i.e., extremely large rank-one tensors but
canceling each other. Such degeneracy often causes the non-interpretable result
and numerical instability for the neural network ne-tuning. This paper is the first
study on degeneracy in the tensor decomposition of convolutional kernels. We
present a novel method, which can stabilize the low-rank approximation of con-
volutional kernels and ensure efficient compression while preserving the high-
quality performance of the neural networks. We evaluate our approach on popular
CNN architectures for image classification and show that our method results in
much lower accuracy degradation and provides consistent performance.

Keywords: Convolutional neural network acceleration · Low-rank tensor
decomposition · Sensitivity · Degeneracy correction

1 Introduction

Convolutional neural networks (CNNs) and their recent extensions have significantly
increased their ability to solve complex computer vision tasks, such as image classifica-
tion, object detection, instance segmentation, image generation, etc. Together with big
data and fast development of the internet of things, CNNs bring new tools for solving
computer science problems, which are intractable using classical approaches.

Despite the great successes and rapid development of CNNs, most modern neu-
ral network architectures contain a huge number of parameters in the convolutional
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and fully connected layers, therefore, demand extremely high computational costs [46],
which makes them difficult to deploy on devices with limited computing resources,
like PC or mobile devices. Common approaches to reduce redundancy of the neural
network parameters are: structural pruning [13,20,21,59], sparsification [12,15,36],
quantization [2,44] and low-rank approximation [4,10,14,26,28,33].

The weights of convolutional and fully connected layers are usually overparame-
terized and known to lie on a low-rank subspace [9]. Hence, it is possible to represent
them in low-rank tensor/tensor network formats using e.g., Canonical Polyadic decom-
position (CPD) [1,10,33], Tucker decomposition [14,26], Tensor Train decomposition
[37,55]. The decomposed layers are represented by a sequence of new layers with much
smaller kernel sizes, therefore, reducing the number of parameters and computational
cost in the original model.

Various low-rank tensor/matrix decompositions can be straightforwardly applied to
compress the kernels. This article intends to promote the simplest tensor decomposition
model, the Canonical Polyadic decomposition (CPD).

1.1 Why CPD

In neural network models working with images, the convolutional kernels are usually
tensors of order 4 with severely unbalanced dimensions, e.g., D × D × S × T , where
D × D represents the filter sizes, S and T denote the number of input and output chan-
nels, respectively. The typical convolutional filters are often of relatively small sizes,
e.g., 3 × 3, 7 × 7, compared to the input (S ) and output (T ) dimensions, which in total
may have hundred of thousands of filters. This leads to excessive redundancy among the
kernel filters, which are particularly suited for tensor decomposition methods. Among
low-rank tensor decomposition and tensor networks, the Canonical Polyadic tensor
decomposition [17,22] is the simplest and elegant model, which represents a tensor
by sum of rank-1 tensors1 or equivalently by factor matrices interconnected through
a diagonal tensor (Fig. 1a). The number of parameters for a CP model of rank-R is
R(2D + S + T ) or R(D2 + S + T ) when we consider kernels as order-4 tensors or their
reshaped order-3 versions, respectively. Usually, CPD gains a relatively high compres-
sion ratio since the decomposition rank is not very large [14,33].

Representation of the high order convolutional kernels in the form of the CP model
is equivalent to the use of separable convolutions. In [28], the authors modeled the high
order kernels in the generalized multiway convolution by the CP model.

The Tucker tensor decomposition (TKD) [52] is an alternative tensor decomposition
method for convolutional kernel compression [26]. The TKD provides more flexible
interaction between the factor matrices through a core tensor, which is often dense
in practice (Fig. 1b). Kim et al. [26] investigated low-rank models at the most suited
noise level for different unfoldings2 of the kernel tensor. This heuristic method does
not consider a common noise level for multi modes and is not optimal to attain the
approximation error bound.

1 Rank-1 tensor of size n1 × n2 × · · · × nd is an outer product of d vectors with dimen-
sions n1, n1, . . . , nd.

2 The mode- j unfolding of an order-d tensor of size n1 × n2 × · · · × nd reorders the elements of
the tensor into a matrix with nj rows and n1 . . . nj−1nj+1 . . . nd columns.
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Block tensor decomposition [6] is an extension of the TKD, which models data as
the sum of several Tucker or Kruskal terms, i.e., a TKD with block-diagonal core tensor.
For the same multilinear rank as in TKD, BTD exhibits a smaller number of parameters;
however, there are no available proper criteria for block size selection (rank of BTD).

In addition, the other tensor networks, e.g., Tensor Train [38] or Tensor Chain (TC)
[11,25], are not applicable unless the kernel filters are tensorized to higher orders.
Besides, the Tensor Chain contains a loop, is not closed and leads to severe numeri-
cal instability to nd the best approximation, see Theorem 14.1.2.2 [16,31].

We later show that CPD can achieve much better performance with an even higher
compression ratio by further compression the Tucker core tensors by solving a suitably
formulated optimization problem.

≈K A

B

C

[S×T×D2] [S×R] [R×T ]

[D2×R]

(a) CPD

≈K GU V

[S×T×D2] [S×R1] [R2×T ][R1×R2×D2]

(b) TKD

≈K U VA
B

C

[S×T×D2] [S×R1] [R2×T ][R1×R] [R×R2]

[D2×R]

(c) TKD-CPD

Fig. 1. Approximation of a third-order tensor using Canonical Polyadic tensor decomposition
(CPD), Tucker-2 tensor decomposition (TKD), and their combination (TKD-CPD). CPD and
TKD are common methods applied for CNN compression.

1.2 Why Not Standard CPD

In one of the first works applying CPD to convolutional kernels, Denton et al. [10] com-
puted the CPD by sequentially extracting the best rank-1 approximation in a greedy
way. This type of deflation procedure is not a proper way to compute CPD unless
decomposition of orthogonally decomposable tensors [57] or with a strong assump-
tion, e.g., at least two factor matrices are linearly independent, and the tensor rank must
not exceed any dimension of the tensor [41]. The reason is that subtracting the best
rank-1 tensor does not guarantee to decrease the rank of the tensor [49].

In [33], the authors approximated the convolution kernel tensors using the Nonlinear
Least Squares (NLS) algorithm [54], one of the best existing algorithms for CPD. How-
ever, as mentioned in the Ph.D. thesis [32], it is not trivial to optimize a neural network
even when weights from a single layer are factorized, and the authors “failed to find
a good SGD learning rate” with fine-tuning a classification model on the ILSVRC-12
dataset.

Diverging Component - Degeneracy. Common phenomena when using numerical
optimization algorithms to approximate a tensor of relatively high rank by a low-rank
model or a tensor, which has nonunique CPD, is that there should exist at least two
rank-one tensors such that their Frobenius norms or intensities are relatively high but
cancel each other [47], �a(1)

r ◦ a(2)
r ◦ · · · ◦ a(d)

r �F → ∞ .
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The degeneracy of CPD is reported in the literature, e.g., in [5,18,29,35,39,45].
Some efforts which impose additional constraints on the factor matrices can improve
stability and accelerate convergence, such as, column-wise orthogonality [29,45], posi-
tivity or nonnegativity [34]. However, the constraints are not always applicable in some
data, and thus prevent the estimator from getting lower approximation error, yielding to
the trade-off between estimation stability and good approximation error.3

We have applied CPD approximations for various CNNs and confirm that the
diverging component occurs for most cases when we used either Alternating Least
Squares (ALS) or NLS [54] algorithm. As an example, we approximated one of the
last convolutional layers from ResNet-18 with rank-500 CPD and plotted in Fig. 2(left)
intensities of CPD components, i.e., Frobenius norm of rank-1 tensors. The ratio
between the largest and smallest intensities of rank-1 tensors was greater than 30.
Figure 2(right) shows that the sum of squares of intensities for CPD components is
(exponentially) higher when the decomposition is with a higher number of components.
Another criterion, sensitivity (Definition 1), shows that the standard CPD algorithms are
not robust to small perturbations of factor matrices, and sensitivity increases with higher
CP rank.

Such degeneracy causes the instability issue when training a CNN with decomposed
layers in the CP (or Kruskal) format. More specifically, it causes difficulty for a neural
network to perform fine-tuning, selecting a good set of parameters, and maintaining
stability in the entire network. This problem has not been investigated thoroughly. To
the best of our knowledge, there is no method for handling this problem.

Fig. 2. (Left) Intensity (Frobenius norm) of rank-1 tensors in CPDs of the kernel in the 4th layer
of ResNet-18. (Right) Sum of squares of the intensity and Sensitivity vs Rank of CPD. EPC-CPD
demonstrates much lower intensity and sensitivity as compared to CPD.

1.3 Contributions

In this paper, we address the problem of CNN stability compressed by CPD. The key
advantages and major contributions of our paper are the following:

– We propose a new stable and efficient method to perform neural network compres-
sion based on low-rank tensor decompositions.

3 As shown in [53], RMS error is not the only one minimization criterion for a particular com-
puter vision task.
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– We demonstrate how to deal with the degeneracy, the most severe problem when
approximating convolutional kernels with CPD. Our approach allows finding CPD
a reliable representation with minimal sensitivity and intensity.

– We show that the combination of Tucker-2 (TKD) and the proposed stable CPD
(Fig. 1c) outperforms CPD in terms of accuracy/compression trade-off.

We provide results of extensive experiments to confirm the efficiency of the proposed
algorithms. Particularly, we empirically show that the neural network with weights in
factorized CP format obtained using our algorithms is more stable during fine-tuning
and recovers faster (close) to initial accuracy.

2 Stable Tensor Decomposition Method

2.1 CP Decomposition of Convolutional Kernel

In CNNs, the convolutional layer performs mapping of an input (source) tensor X of
size H ×W × S into output (target) tensor Y of size H� ×W� × T following the relation

Yh�,w�,t =

D�

i=1

D�

j=1

S�

s=1

K̃i, j,s,tXhi,w j,s, (1)

where hi = (h� − 1) Δ + i − P, and wj = (w� − 1) Δ + j − P, and K̃ is an order-4 kernel
tensor of size D × D × S × T , Δ is stride, and P is zero-padding size.

Our aim is to decompose the kernel tensor K̃ by the CPD or the TKD. As it was
mentioned earlier, we treat the kernel K̃ as order-3 tensor K of the size D2×S ×T , and
represent the kernel K by sum of R rank-1 tensors

K � K̂ =

R�

r=1

ar ◦ br ◦ cr, (2)

where A = [a1, . . . , aR], B = [b1, . . . , bR] and C = [c1, . . . , cR] are factor matrices of
size D2 × R, S × R and T × R, respectively. See an illustration of the model in Fig. 1a.
The tensor K̂ = �A,B,C� in the Kruskal format uses (D2 + S + T ) × R parameters.

2.2 Degeneracy and Its Effect to CNN Stability

Degeneracy occurs in most CPD of the convolutional kernels. The Error Preserving
Correction (EPC) method [42] suggests a correction to the decomposition results in
order to get a more stable decomposition with lower sensitivity. There are two possible
measures for assessment of the degeneracy degree of the CPD: sum of Frobenius norms
of the rank-1 tensors [42]

sn(�A,B,C�) =
R�

r=1

�ar ◦ br ◦ cr�2F (3)

and sensitivity, defined as follows.
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Definition 1 (Sensitivity [51]). Given a tensor T = �A,B,C�, define the sensitivity as

ss(�A,B,C�) = lim
σ2→0

1
Rσ2

E{�T − �A + δA,B + δB,C + δC��2F} (4)

where δA, δB, δC have random i.i.d. elements from N(0,σ2).

The sensitivity of the decomposition can be measured by the expectation (E{·}) of the
normalized squared Frobenius norm of the difference. In other words, sensitivity of the
tensor T = �A,B,C� is a measure with respect to perturbations in individual factor
matrices. CPDs with high sensitivity are usually useless.

Lemma 1.

ss(�A,B,C�) = tr{(AT A) � (BT B) + (BT B) � (CT C) + (AT A) � (CT C)}. (5)

where � denotes the Hadamard element-wise product.

Proof. First, the perturbed tensor in (4) can be expressed as sum of 8 Kruskal terms

�A + δA,B + δB,C + δC� = �A,B,C� + �δA,B,C� + �A, δB,C� + �A,B, δC�

+ �δA, δB,C� + �δA,B, δC� + �A, δB, δC� + �δA, δB, δC�.

Since these Kruskal terms are uncorrelated and expectation of the terms composed by
two or three factor matrices δA, δB and δC are negligible, the expectation in (4) can be
expressed in the form

E{�T − �A + δA,B + δB,C + δC��2F} = E{��δA,B,C��2F}
+ E{��A, δB,C��2F} + E{��A,B, δC��2F} . (6)

Next we expand the Frobenius norm of the three Kruskal tensors

E{��δA,B,C��2F} = E{� ((C 	 B) ⊗ I) vec(δA) �2}
= E{tr((C 	 B) ⊗ I)T ((C 	 B) ⊗ I) vec(δA) vec(δA)T )}
= σ2 tr((C 	 B)T (C 	 B) ⊗ I)

= Rσ2 tr((CT C) � (BT B)) (7)

E{��A, δB,C��2F} = Rσ2 tr((CT C) � (AT A)) (8)

E{��A,B, δC��2F} = Rσ2 tr((BT B) � (AT A)) (9)

where 	 and ⊗ are Khatri-Rao and Kronecker products, respectively.
Finally, we replace these above expressions into (6) to obtain the compact expres-

sion of sensitivity.
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2.3 Stabilization Method

Sensitivity Minimization. The first method to correct CPD with diverging components
proposed in [42] minimizes the sum of Frobenius norms of rank-1 tensors while the
approximation error is bounded. In [51]. the Krylov Levenberg-Marquardt algorithm
was proposed for the CPD with bounded sensitivity constraint.

In this paper, we propose a variant of the EPC method which minimizes the sensi-
tivity of the decomposition while preserving the approximation error, i.e.,

min
{A,B,C}

ss(�A,B,C�) (10)

s.t. �K − �A,B,C��2F ≤ δ2 .
The bound, δ2, can represent the approximation error of the decomposition with diverg-
ing components. Continuing the CPD using a new tensor K̂ = �A,B,C� with a lower
sensitivity can improve its convergence.

Update Rules. We derive alternating update formulas for the above optimization prob-
lem. While B and C are kept fixed, the objective function is rewritten to update A as

min
A

tr{(AT A) �W} = �A diag(w)�2F (11)

s.t. �K(1) − AZT �2F ≤ δ2,
where K(1) is mode-1 unfolding of the kernel tensor K, Z = C	B and W = BT B+CT C
is a symmetric matrix of size R × R, w = [

√
w1,1, . . . ,

√
wR,R] is a vector of length R

taken from the diagonal of W.

Remark 1. The problem (11) can be reformulated as a regression problem with bound
constraint

min
�A

��A�2F (12)

s.t. �K(1) − �A�ZT �2F ≤ δ2,

where �A = A diag(w) and �Z = Z diag(w−1). This problem can be solved in closed form
solution through the quadratic programming over a sphere [43]. We skip the algorithm
details and refer to the solver in [43].

Remark 2. If factor matrices B and C are normalized to unit length columns, i.e.,
�br�2 = �cr�2 = 1, r = 1, . . . ,R, then all entries of the diagonal of W are identical.
The optimization problem in (11) becomes seeking a weight matrix, A, with minimal
norm

min
A

�A�2F (13)

s.t. �K(1) − AZT �2F ≤ δ2.
This sub-optimization problem is similar to that in the EPC approach [42].
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2.4 Tucker Decomposition with Bound Constraint

Another well-known representation of multi-way data is the Tucker Decomposition
[52], which decomposes a given tensor into a core tensor and a set of factor matri-
ces (see Fig. 1b for illustration). The Tucker decomposition is particularly suited as
prior-compression for CPD. In this case, we compute CPD of the core tensor in TKD,
which is of smaller dimensions than the original kernels.

For our problem, we are interested in the Tucker-2 model (see Fig. 1b)

K � G ×2 U ×3 V, (14)

where G is the core tensor of size D2 × R1 × R2, U and V are matrices of size S × R1

and T ×R2, respectively. Because of rotational ambiguity, without loss in generality, the
matrices U and V can be assumed to have orthonormal columns.

Different from the ordinary TK-2, we seek the smallest TK-2 model which holds
the approximation error bound δ2 [40], i.e.,

min
{G,U,V}

R1S + R2T + R1R2D2 (15)

s.t. �K − G ×2 U ×3 V�2F ≤ δ2
UT U = IR1 ,V

T V = IR2 .

We will show that the core tensor G has closed-form expression as in the HOOI
algorithm for the orthogonal Tucker decomposition [7], and the two-factor matrices, U
and V, can be sequentially estimated through Eigenvalue decomposition (EVD).

Lemma 2. The core tensor G has closed-form expression G� =K ×2 UT ×3 VT .

Proof. From the error bound condition, we can derive

δ2 ≥ �K − G ×2 U ×3 V�2F = �K�2F − �G��2F + �G − G��2F ,
which indicates that the core tensor can be expressed as G = G� + E, where E is an
error tensor such that its norm γ2 = �E�2F ≤ δ2 + �G��2F − �K�2F .

Next define a matrix Q1 of size S × S

Q1(i, j) =
R2�

r=1

V(:, r)T K(:, i, :)K(:, j, :)T V(:, r) . (16)

Assume that V� is the optimal factor matrix with the minimal rank R�2 . The optimization
in (15) becomes the rank minimization problem for U

min
U

rank(U) (17)

s.t. tr(UT Q1U) ≥ �K�2F + γ2 − δ2 ,
UT U = IR1 .

The optimal factor matrix U� comprises R1 principal eigenvectors of Q1, where R1 is
the smallest number of eigenvalues, λ1 ≥ λ2 ≥ · · · ≥ λR1 such that their norm exceeds
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the bound �Y�2F −δ2+γ2, that is,
R1�

r=1

λr ≥ �K�2F −δ2+γ2 >

R1−1�

r=1

λr. It is obvious that the

minimal number of columns R1 is achieved, when the bound �K�2F +γ2−δ2 is smallest,
i.e., γ = 0. Implying that the optimal G is G�. This completes the proof.

Similar to the update of U, the matrix V comprises R2 principal eigenvectors of the
matrix Q2 of size T × T

Q2(i, j) =
R1�

r=1

U(:, r)T K(:, :, i)T K(:, :, k) U(:, r), (18)

where R2 is either given or determined based on the bound �Y�2F −δ2. The algorithm for
TKD sequentially updates U and V.

3 Implementation

Our method for neural network compression includes the following main steps (see
Fig. 3):

1. Each convolutional kernel is approximated by a tensor decomposition (CPD/TKD-
CPD in case of ordinary convolutions and SVD in case of 1 × 1 convolution) with
given rank R.

2. The CP decomposition with diverging components is corrected using the error pre-
serving method. The result is a new CP model with minimal sensitivity.

3. An initial convolutional kernel is replaced with a tensor in CPD/TKD-CPD or SVD
format, which is equivalent to replacing one convolutional layer with a sequence of
convolutional layers with a smaller total number of parameters.

4. The entire network is then fine-tuned using backpropagation.

CPD Block results in three convolutional layers with shapes (Cin×R×1×1), depthwise
(R×R×D×D) and (R×Cout×1×1), respectively (see Fig. 3a). In obtained structure, all
spatial convolutions are performed by central D×D group convolution with R channels.
1×1 convolutions allow the transfer of input data to a more compact channel space (with
R channels) and then return data to initial channel space.

TKD-CPD Block is similar to the CPD block, but has 4 (1 × 1) convolutional layers
with the condition that the CP rank must exceed the multilinear ranks, R1 and R2 (see
Fig. 3c). This structure allows additionally to reduce the number of parameters and
floating operations in a factorized layer. Otherwise, when R < R1 and R < R2, sequential
1× 1 convolutions can be merged into one 1× 1 convolution, converting the TKD-CPD
layer format to CPD block.

SVD Block is a variant of CPD Block but comprises only two-factor layers, computed
using SVD. Degeneracy is not considered in this block, and no correction is applied
(see Fig. 3b).
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Convolutional Layer

Cin × Cout × D × D

Depth-wise

Convolutional Layer

R × R × D × D

Convolutional Layer in CPD format

Convolutional Layer

R × Cout × 1 × 1
Convolutional Layer

Cin × R × 1 × 1

(a)

Convolutional Layer

Cin × Cout × 1 × 1

Convolutional Layer

R × Cout × 1 × 1
Convolutional Layer

Cin × R × 1 × 1

Convolutional Layer in SVD format

(b)

Convolutional Layer

Cin × Cout × D × D

Initial Convolutional Layer

Convolutional Layer

R1 × R2 × D × D

Convolutional Layer in TKD format

Convolutional Layer

R2 × Cout × 1 × 1
Convolutional Layer

Cin × R1 × 1 × 1

Depth-wise

Convolutional Layer

R × R × D × D

Convolutional Layer in TKD-CPD format

Convolutional Layer

R × R2 × 1 × 1
Convolutional Layer

R1 × R × 1 × 1
Convolutional Layer

R2 × Cout × 1 × 1
Convolutional Layer

Cin × R1 × 1 × 1

(c)

Initial Convolutional Layer Initial Convolutional Layer

Fig. 3. Graphical illustration to the proposed layer formats that show how decomposed factors
are used as new weights of the compressed layer. Cin,Cout are the number of input of and output
channels and D is a kernel size. (a) CPD layer format, R is a CPD rank. (b) SVD layer format, R
is a SVD rank. (c) TKD-CPD layer format, R is a CPD rank, R1 and R2 are TKD ranks.

Rank Search Procedure. Determination of CP rank is an NP-hard problem [22]. We
observe that the drop in accuracy by a factorized layer influences accuracy with fine-
tuning of the whole network. In our experiments, we apply a heuristic binary search to
find the smallest rank such that drop after single layer fine-tuning does not exceed a
predefined accuracy drop threshold EPS .

4 Experiments

We test our algorithms on three representative convolutional neural network archi-
tectures for image classification: VGG-16 [48], ResNet-18, ResNet-50 [19]. We com-
pressed 7 × 7 and 3 × 3 convolutional kernels with CPD, CPD with sensitivity correc-
tion (CPD-EPC), and Tucker-CPD with the correction (TKD-CPD-EPC). The networks
after fine-tuning are evaluated through top 1 and top 5 accuracy on ILSVRC-12 [8] and
CIFAR-100 [30].

We conducted a series of layer-wise compression experiments and measured accu-
racy recovery and whole model compression of the decomposed architectures. Most of
our experiments were devoted to the approximation of single layers when other layers
remained intact. In addition, we performed compression of entire networks.

The experiments were conducted with the popular neural networks framework
Pytorch on GPU server with NVIDIA V-100 GPUs. As a baseline for ILSVRC-12 we
used a pre-trained model shipped with Torchvision. Baseline CIFAR-100 model was
trained using the Cutout method. The fine-tuning process consists of two parts: local or
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single layer fine-tuning, and entire network fine-tuning. The model was trained with an
SGD optimizer with an initial learning rate of 10−3 and learning decay of 0.1 at each
loss saturation stage, weight decay was set as 10−4.

Fig. 4. (Left) Performance evaluation of ResNet-18 on ILSVRC-12 dataset after replacing
layer4.1.conv1 by its approximation using CPD and CPD-EPC with various ranks. The net-
works are fine-tuned after compression. (Right) Top-1 accuracy and sensitivity of the models esti-
mated using CPD (blue) and CPD-EPC (red). Each model has a single decomposed layer with
the best CP rank and was fine-tuned after compression. CPD-EPC outperforms CPD in terms of
accuracy/sensitivity trade-off. layer4.1.conv1 – layer 4, residual block 2 (indexing starts with
0), convolutional layer 1 (Color figure online)

4.1 Layer-Wise Study

CPD-EPC Vs CPD. For this study, we decomposed the kernel filters in 17 convolu-
tional layers of ResNet-18 with different CP ranks, R, ranging from small (10) to rela-
tively high rank (500). The CPDs were run with a sufficiently large number of iterations
so that all models converged or there was no significant improvement in approximation
errors.

Experiment results show that for all decomposition ranks, the CPD-EPC regularly
results in considerably higher top 1 and top 5 model accuracy than the standard CPD
algorithm. Figure 4 (left) demonstrates an illustrative example for layer4.1.conv1.
An important observation is that the compressed network using CPD even with the rank
of 500 (and fine-tuning) does not achieve the original network’s accuracy. However,
with EPC, the performances are much better and attain the original accuracy with the
rank of 450. Even a much smaller model with the rank of 250 yields a relatively good
result, with less than 1% loss of accuracy.

Next, each convolutional layer in ResNet-18 was approximated with different CP
ranks and fine-tuned. The best model in terms of top-1 accuracy was then selected.
Figure 4 (right) shows relation between the sensitivity and accuracy of the best models.
It is straightforward to see that the models estimated using CPD exhibit high sensitivity,
and are hard to train. The CPD-EPC suppressed sensitivities of the estimated models
and improved the performance of the compressed networks. The CPD-EPC gained the
most remarkable accuracy recovery on deeper layers of CNNs.

The effect is significant for some deep convolutional layers of the network with
∼ 2% top-1 accuracy difference.
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CPD-EPC Vs TKD-EPC. Next, we investigated the proposed compression approach
based on the hybrid TKD-CPD model with sensitivity control. Similar experiments
were conducted for the CIFAR-100 dataset. The TK multi-linear ranks (R1,R2) were
kept fixed, while the CP rank varied in a wide range.

In Fig. 5, we compare accuracy of the two considered compressed approaches
applied to the layer 4.0.conv1 in ResNet-18. For this case, CPD-EPC still demon-
strated a good performance. The obtained accuracy is very consistent, implying that the
layer exhibits a low-rank structure. The hybrid TKD-CPD yielded a rather low accu-
racy for small models, i.e., with small ranks, which are much worse than the CPD-based
model with less or approximately the same number of parameters. However, the method
quickly attained the original top-1 accuracy and even exceeded the top-5 accuracy when
the RCP ≥ 110.

Comparison of accuracy vs. the number of FLOPs and parameters for the other lay-
ers is provided in Fig. 6. Each dot in the figure represents (accuracy, no. FLOPs) for
each model. The dots for the same layers are connected by dashed lines. Once again,
TKD-EPC achieved higher top 1 and top 5 accuracy with a smaller number of parame-
ters and FLOPs, compared to CPD-EPC.

Fig. 5. Performance comparison (top1 accuracy – left, top5 accuracy – right) of CPD-EPC
and TKD-CPD-EPC in compression of the layer 4.0.conv1 in the pre-trained ResNet-18 on
ILSVRC-12 dataset. TKD-CPD-EPC shows better accuracy recovery with a relatively low num-
ber of FLOPs. Initial model has ≈ 1.11 × 109 FLOPs.

Fig. 6. Accuracy vs FLOPs for models obtained from ResNet-18 (CIFAR-100) via compression
of one layer using standard CPD (cross), CPD-EPC (square), or TKD-CPD-EPC (circle) decom-
position. Each color corresponds to one layer, which has been compressed using three different
methods. For each layer, TKD-CPD-EPC outperforms other decompositions in terms of FLOPs,
or accuracy, or both.
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4.2 Full Model Compression

In this section, we demonstrate the efficiency of our proposed method in a full model
compression of three well-known CNNs VGG-16 [48], ResNet-18, ResNet-50 [19] for
the ILSVRC-12. We compressed all convolutional layers remaining fully-connected
layers intact. The proposed scheme gives (×1.10,×5.26) for VGG-16, (×3.82,×3.09)
for ResNet-18 and (×2.51,×2.64) for ResNet-50 reduction in the number of weights
and FLOPs respectively. Table 1 shows that our approach yields a high compression
ratio while having a moderate accuracy drop.

VGG [48]. We compared our method with other low-rank compression approaches on
VGG-16. The Asym method [58] is one of the first successful methods on the whole
VGG-16 network compression. This method exploits matrix decomposition, which is
based on SVD and is able to reduce the number of flops by a factor of 5. Kim et al. [26]
applied TKD with ranks selected by VBMF, and achieved a comparable compression
ratio but with a smaller accuracy drop. As can be seen from the Table 1, our approach
outperformed both Asym and TKD in terms of compression ratio and accuracy drop.

Table 1. Comparison of different model compression methods on ILSVRC-12 validation dataset.
The baseline models are taken from Torchvision.

Model Method ↓ FLOPs Δ top-1 Δ top-5

VGG-16 Asym. [58] ≈ 5.00 – –1.00

TKD + VBMF [26] 4.93 – −0.50

Our (EPSa = 0.005) 5.26 −0.92 −0.34

ResNet-18 Channel gating NN [24] 1.61 −1.62 −1.03

Discrimination-aware channel Pruning [59] 1.89 −2.29 −1.38

FBS [13] 1.98 −2.54 −1.46

MUSCO [14] 2.42 −0.47 −0.30

Our (EPSa = 0.00325) 3.09 −0.69 −0.15

ResNet-50 Our (EPS1 = 0.0028) 2.64 −1.47 −0.71
a EPS: accuracy drop threshold. Rank of the decomposition is chosen to maintain the drop in
accuracy lower than EPS.

ResNet-18 [19]. This architecture is one of the lightest in the ResNet family, which
gives relatively high accuracy. Most convolutional layers in ResNet-18 are with kernel
size 3×3, making it a perfect candidate for the low-rank based methods for compression.
We have compared our results with channel pruning methods [13,24,59] and iterative
low-rank approximation method [14]. Among all the considered results, our approach
has shown the best performance in terms of compression - accuracy drop trade-off.

ResNet-50 [19]. Compared to ResNet-18, ResNet-50 is a deeper and heavier neural net-
work, which is used as backbone in various modern applications, such as object detec-
tion and segmentation. A large number of 1×1 convolutions deteriorate performance of
low-rank decomposition-based methods. There is not much relevant literature available
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for compression of this type of ResNet. To the best of our knowledge, the results we
obtained can be considered the first attempt to compress the entire ResNet-50.

Inference Time for Resnet-50. We briefly compare the inference time of Resnet-50
for the image classification task in Table 2. The measures were taken on 3 platforms:
CPU server with Intel R� Xeon R� Silver 4114 CPU 2.20 GHz, NVIDIA GPU server with
R� Tesla R� V100 and Qualcomm mobile CPU R� SnapdragonTM 845. The batch size
was choosen to yield small variance in inference measurements, e.g., 16 for the mea-
sures on CPU server, 128 for the GPU server and 1 for the mobile CPU.

Table 2. Inference time and acceleration for ResNet-50 on different platforms.

Platform Model inference time

Original Compressed

Intel R� Xeon R�Silver 4114 CPU 2.20 GHz 3.92 ± 0.02 s 2.84 ± 0.02 s

NVIDIA R�Tesla R�V100 102.3 ± 0.5 ms 89.5 ± 0.2 ms

Qualcomm R�SnapdragonTM845 221 ± 4 ms 171 ± 4 ms

5 Discussion and Conclusions

Replacing a large dense kernel in a convolutional or fully-connected layer by its low-
rank approximation is equivalent to substituting the initial layer with multiple ones,
which in total have fewer parameters. However, as far as we concerned, the sensitivity of
the tensor-based models has never been considered before. The closest method proposes
to add regularizer on the Frobenius norm of each weight to prevent over-fitting.

In this paper, we have shown a more direct way to control the tensor-based net-
work’s sensitivity. Through all the experiments for both ILSVRC-12 and CIFAR-100
dataset, we have demonstrated the validity and reliability of our proposed method for
compression of CNNs, which includes a stable decomposition method with minimal
sensitivity for both CPD and the hybrid TKD-CPD.

As we can see from recent deep learning literature [23,28,50], modern state-of-the-
art architectures exploit the CP format when constructing blocks of consecutive layers,
which consist of 1 × 1 convolution followed by depth-wise separable convolution. The
intuition that stays behind the effectiveness of such representation is that first 1 × 1
convolution maps data to a higher-dimensional subspace, where the features are more
separable, so we can apply separate convolutional kernels to preprocess them. Thus,
representing weights in CP format using stable and efficient algorithms is the simplest
and efficient way of constructing reduced convolutional kernels.

To the best of our knowledge, our paper is the first work solving a problem of
building weights in the CP format that is stable and consistent with the fine-tuning
procedure.

The ability to control sensitivity and stability of factorized weights might be crucial
when approaching incremental learning task [3] or multi-modal tasks, where informa-
tion fusion across different modalities is performed through shared weight factors.
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Our proposed CPD-EPC method can allow more stable fine-tuning of architec-
tures containing higher-order CP convolutional layers [27,28] that are potentially very
promising due to the ability to propagate the input structure through the whole network.
We leave the mentioned directions for further research.

Acknowledgements. The work of A.-H. Phan, A. Cichocki, I. Oseledets, J. Gusak, K. Sobolev,
K. Sozykin and D. Ermilov was supported by the Ministry of Education and Science of the Rus-
sian Federation under Grant 14.756.31.0001. The results of this work were achieved during the
cooperation project with Noah’s Ark Lab, Huawei Technologies. The authors sincerely thank the
Referees for very constructive comments which helped to improve the quality and presentation
of the paper. The computing for this project was performed on the Zhores CDISE HPC cluster at
Skoltech [56].

References

1. Astrid, M., Lee, S.: CP-decomposition with tensor power method for convolutional neural
networks compression. In: 2017 IEEE International Conference on Big Data and Smart Com-
puting, BigComp 2017, Jeju Island, South Korea, 13–16 February 2017, pp. 115–118. IEEE
(2017). https://doi.org/10.1109/BIGCOMP.2017.7881725

2. Bulat, A., Kossaifi, J., Tzimiropoulos, G., Pantic, M.: Matrix and tensor decompositions for
training binary neural networks. arXiv preprint arXiv:1904.07852 (2019)

3. Bulat, A., Kossaifi, J., Tzimiropoulos, G., Pantic, M.: Incremental multi-domain learning
with network latent tensor factorization. In: AAAI (2020)

4. Chen, T., Lin, J., Lin, T., Han, S., Wang, C., Zhou, D.: Adaptive mixture of low-rank factor-
izations for compact neural modeling. In: CDNNRIA Workshop, NIPS (2018)

5. Cichocki, A., Lee, N., Oseledets, I., Phan, A.H., Zhao, Q., Mandic, D.P.: Tensor networks
for dimensionality reduction and large-scale optimization: Part 1 low-rank tensor decompo-
sitions. Found. Trends R�Mach. Learn. 9(4–5), 249–429 (2016)

6. De Lathauwer, L.: Decompositions of a higher-order tensor in block terms – Part I and II.
SIAM J. Matrix Anal. Appl. 30(3), 1022–1066 (2008). http://publi-etis.ensea.fr/2008/De08e.
special Issue on Tensor Decompositions and Applications

7. De Lathauwer, L., De Moor, B., Vandewalle, J.: On the best rank-1 and rank-(R1, R2,., RN)
approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 21, 1324–1342 (2000)

8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierar-
chical image database. 2009 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 248–255 (2009)

9. Denil, M., Shakibi, B., Dinh, L., Ranzato, M., de Freitas, N.: Predicting parameters in deep
learning. In: Proceedings of the 26th International Conference on Neural Information Pro-
cessing Systems - Volume 2, NIPS 2013, pp. 2148–2156. Curran Associates Inc. (2013)

10. Denton, E.L., Zaremba, W., Bruna, J., LeCun, Y., Fergus, R.: Exploiting linear structure
within convolutional networks for efficient evaluation. In: Advances in Neural Information
Processing Systems, vol. 27, pp. 1269–1277. Curran Associates, Inc. (2014)

11. Espig, M., Hackbusch, W., Handschuh, S., Schneider, R.: Optimization problems in con-
tracted tensor networks. Comput. Vis. Sci. 14(6), 271–285 (2011)

12. Figurnov, M., Ibraimova, A., Vetrov, D.P., Kohli, P.: PerforatedCNNs: acceleration through
elimination of redundant convolutions. In: Advances in Neural Information Processing Sys-
tems, pp. 947–955 (2016)

13. Gao, X., Zhao, Y., Dudziak, Ł., Mullins, R., Xu, C.Z.: Dynamic channel pruning: feature
boosting and suppression. In: International Conference on Learning Representations (2019)



Stable Tensor Decomposition for Compression of CNN 537

14. Gusak, J., et al.: Automated multi-stage compression of neural networks. In: 2019 IEEE/CVF
International Conference on Computer Vision Workshop (ICCVW), pp. 2501–2508 (2019)

15. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for efficient
neural network. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.)
Advances in Neural Information Processing Systems, vol. 28, pp. 1135–1143 (2015)

16. Handschuh, S.: Numerical Methods in Tensor Networks. Ph.D. thesis, Faculty of Mathemat-
ics and Informatics, University Leipzig, Germany, Leipzig, Germany (2015)

17. Harshman, R.A.: Foundations of the PARAFAC procedure: models and conditions for an
“explanatory” multimodal factor analysis. In: UCLA Working Papers in Phonetics, vol. 16
pp. 1–84 (1970)

18. Harshman, R.A.: The problem and nature of degenerate solutions or decompositions of 3-
way arrays. In: Tensor Decomposition Workshop, Palo Alto, CA (2004)

19. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

20. He, Y., Kang, G., Dong, X., Fu, Y., Yang, Y.: Soft filter pruning for accelerating deep convo-
lutional neural networks. In: Proceedings of the Twenty-Seventh International Joint Confer-
ence on Artificial Intelligence, IJCAI 2018, pp. 2234–2240 (7 2018)

21. He, Y., Lin, J., Liu, Z., Wang, H., Li, L.-J., Han, S.: AMC: AutoML for model compression
and acceleration on mobile devices. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y.
(eds.) ECCV 2018. LNCS, vol. 11211, pp. 815–832. Springer, Cham (2018). https://doi.org/
10.1007/978-3-030-01234-2 48

22. Hillar, C.J., Lim, L.H.: Most tensor problems are NP-hard. J. ACM (JACM) 60(6), 45 (2013)
23. Howard, A., et al.: Searching for MobileNetv3. In: Proceedings of the IEEE International

Conference on Computer Vision, pp. 1314–1324 (2019)
24. Hua, W., Zhou, Y., De Sa, C.M., Zhang, Z., Suh, G.E.: Channel gating neural networks. In:

Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché Buc, F., Fox, E., Garnett, R. (eds.)
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